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Abstract: We study the singularity formation of smooth solutions of the relativistic
Euler equations in (3 + 1)-dimensional spacetime for both finite initial energy and infi-
nite initial energy. For the finite initial energy case, we prove that any smooth solution,
with compactly supported non-trivial initial data, blows up in finite time. For the case of
infinite initial energy, we first prove the existence, uniqueness and stability of a smooth
solution if the initial data is in the subluminal region away from the vacuum. By further
assuming the initial data is a smooth compactly supported perturbation around a non-
vacuum constant background, we prove the property of finite propagation speed of such
a perturbation. The smooth solution is shown to blow up in finite time provided that the
radial component of the initial “generalized” momentum is sufficiently large.

1. Introduction

In this paper, we study the singularity formation of solutions of the Einstein equations
for an isentropic perfect fluid. Due to the hyperbolic nature of these nonlinear equations,
one expects singularity formation in the solutions. Indeed, one even expects black holes
to form. However, singularity formation in relativistic flow is not yet well-understood;
the theory is most lacking in the multi-dimensional case, (3+1)-dimensional spacetime.

As a first step in this direction, we consider here the relativistic Euler equations for
a perfect fluid in 4-dimensional Minkowski spacetime,

Div T = 0, (1.1)

where

T ij = (p + ρc2)uiuj + pgij , (1.2)

is the stress-energy tensor for a perfect fluid, and gij denotes the flat Minkowski metric,
gij = diag(−1, 1, 1, 1), x = (x0, x1, x2, x3)T with x0 = ct . ρ is the mass-energy
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density, p is the pressure, c is the speed of light, and u is the 4-velocity of the fluid.
Recall that since u = 1

c
dx
dτ

(τ is the proper time, u is a unit 4-vector in Minkowski space),
it follows that

(u0)2 −
3∑

α=1

(uα)2 = 1,

and thus only three of the quantities u0, u1, u2, u3 are independent. We now fix our
space-time coordinates as (t, x1, x2, x3)T , set x = (x1, x2, x3)T , u = (u1, u2, u3)T ,
and let

v = cu√
(1 + |u|2)

.

One easily derives from Eq. (1.1) the relativistic Euler equations:
{

∂t (
ρc2+p
c2−v2 − p

c2 )+ ∇x • ( ρc2+p
c2−v2 v) = 0,

∂t (
ρc2+p
c2−v2 v)+ ∇x • ( ρc2+p

c2−v2 v ⊗ v)+ ∇x p = 0,
(1.3)

in the unknowns ρ, v and p. Here ∇x denotes the spatial gradient operator. Given a
scalar k and 3-vectors a and b, by the notion a ⊗ b we mean the matrix abT , while

∇x • (kabT ) = (∇x • (ka1b),∇x • (ka2b),∇x • (ka3b))T .

We consider the Cauchy problem for (1.3) with initial data

ρ(x, 0) = ρ0(x), v(x, 0) = v0(x). (1.4)

Equations (1.3) close if we assume an equation of state, p = p(ρ), p(0) = 0 with

p(ρ) ≥ 0, 0 < p′(ρ) < c2, p′′(ρ) ≥ 0, f or ρ ∈ (ρ∗, ρ∗), (1.5)

where 0 ≤ ρ∗ < ρ∗ ≤ ∞. For a γ -law, p(ρ) = σ 2ργ with γ ≥ 1, the constant ρ∗
is chosen as follows: if γ = 1, then ρ∗ = ∞; and if γ > 1, then p′(ρ∗) = c2. Thus
the unknowns for the Cauchy problem (1.3)–(1.4) are ρ and v. For more details on the
derivation of Eqs. (1.3) and a discussion of (1.5), see [14].

We are interested in the life span of smooth solutions for the Cauchy problem (1.3)–
(1.4). For this purpose, we shall discuss two different cases: the case of finite initial
energy, and the case of infinite initial energy. For the first case, we shall prove that if the
initial data has compact support, then the life span of any non-trivial smooth solution
for the Cauchy problem (1.3) and (1.4) is finite. For the second case, we show that if
the initial data is a compactly supported perturbation around a non-vacuum background,
then the life span of smooth solutions is finite provided that the radial component of the
initial “generalized” momentum is sufficiently large; cf. Theorem 3.2.

We start with the infinite energy case. The local existence of classical solutions of the
Cauchy problem (1.3)–(1.4) has been established by Makino and Ukai ([6, 7]) provided
that the initial data is in the subluminal region away from the vacuum. A sharper result
is proved here in Theorem 2.1 in Sect. 2, where the stability of the solution with respect
to the initial data (cf. Corollary 2.2) and the properties of finite propagation speed (cf.
Lemma 2.3) are presented. In Sect. 3, we first derive some interesting structural properties
of (1.3) in Lemma 3.1, then we prove a blowup result for smooth solutions (cf. Theorem
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3.2). Our proof is in the spirit of the work of Sideris for classical Euler equations [11]
and is based on the largeness of the initial radial component of “generalized” momen-
tum, which of course implies the largeness of the initial velocity. However, in our case,
the velocity is still subluminal. In Sect. 4, we prove our blowup result for smooth solu-
tions of (1.3)–(1.4) with non-trivial initial data that has compact support. In Sect. 5, we
make some remarks concerning our results. A discussion on the type of singularity is
also given. The existence of initial data satisfying our blowup conditions is also shown
there. All the results in Sect. 2 are based on the existence of a strictly convex entropy
function for (1.3), which was constructed by Makino and Ukai in [6, 7]. For the reader’s
convenience, we present the construction in the Appendix, correcting a few errors in the
original papers.

Before proceeding, we now briefly review the methods and results of singularity for-
mation for nonlinear hyperbolic systems. In one space dimension, the theory is fairly
complete. It was proved that a singularity develops in finite time no matter how small
and smooth the initial data is; cf. [4, 5, 13]. These results were established by the char-
acteristic method, which is quite powerful in one space dimension. In more than one
space dimension, there are no general theorems available mainly because the charac-
teristics become intractable. However, the approach via certain averaged quantities was
introduced by Sideris [11] to prove the formation of singularities in three-dimensional
compressible fluids. This idea avoids the local analysis of solutions. A similar technique
was used to prove other formation of singularity theorems. We refer to [8, 9, 16] for
classical fluids, and [2, 10] for relativistic fluids. Blowup results for relativistic Euler
equations are announced in [2] and [10]. However, as remarked on p. 154 of [2], “ the
unpublished proof in [10] contained an error which invalidated the argument ”. Further-
more, we note that the coefficient matrices in (2.15) of [2] constructed through (2.16)
of [2] are not symmetric away from the equilibrium. But the symmetry of (2.15) in [2]
is crucial to prove the finite propagation speed property needed in their proof. Thus the
argument in [2] is not complete. Furthermore, we note that the equation of state used
in [2] and [10] is different from ours. In addition, the approach of [2] is also different
from ours. Our approach is closer to the method of Sideris [11]. Finally, we remark that
the equation of state (1.5) in this paper is interesting for cosmology. It includes many
physical cases, e.g. γ -laws, p(ρ) = σ 2ργ , γ ≥ 1. For instance, the case

p(ρ) = 1

3
c2ρ

is very important in cosmology; it is the equation of state for the Universe in earliest
times after the Big-Bang; see [15]. Some cases discussed in [2] (e.g. when s = const.)
satisfy (1.5) as well. Another important example (see [15, p.319]) is the equation of state
for neutron stars, where

p = Ac5a(y), ρ = Ac3b(y),

a(y) =
∫ y

0

q4
√

1 + q2
dq, b(y) = 3

∫ y

0
q2
√

1 + q2 dq. (1.6)

Here A is a positive constant. This equation of state implies the following asymptotics:
p → 1

3c
2ρ as ρ → ∞ and p → 1

5A
2/3ρ5/3 as ρ → 0. It is easy to see that

p′(ρ) = c2y2

3(1 + y2)
> 0, p′′(ρ) = 2

9Acy
(1 + y2)−5/2 > 0,
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whenever, y > 0. We also note that y = 0 is equivalent to ρ = 0. Thus the equations
(1.6) also satisfy (1.5).

2. Existence of Solutions: Infinite Energy Case

In this section, we consider the local existence of smooth solutions for the Cauchy prob-
lem (1.3)–(1.4) when the initial data is away from the vacuum. For this purpose, we
introduce some convenient notation:

ρ̃ = ρc2 + p

c2 − v2 ,

ρ̂ =
(
ρc2 + p

c2 − v2 − p

c2

)
. (2.1)

The Cauchy problem (1.3)–(1.4) becomes






ρ̂t + ∇x • (ρ̃v) = 0,
(ρ̃v)t + ∇x • (ρ̃v ⊗ v)+ ∇xp(ρ) = 0,
ρ(x, 0) = ρ0(x), v(x, 0) = v0(x).

(2.2)

Let ρ∗ < ρ∗ be non-negative constants in (1.5) subject to the subluminal condition
p′(ρ∗) ≤ c2. We set

z = (ρ, v1, v2, v3)
T

and define the region �z by

�z = {z : ρ∗ < ρ < ρ∗, v2 < c2}. (2.3)

Theorem 2.1. Assume an equation of state is given as in (1.5). Suppose the initial data
z0(x) = (ρ0(x), v0(x))

T is continuously differentiable on R3, taking values in any com-
pact subset D of �z and that ∇xz0(x) ∈ Hl(R3) for some l > 3/2. Then there exists
T∞, 0 < T∞ ≤ ∞, and a unique differentiable function z(x, t) = (ρ(x, t), v(x, t))T on
R3 × [0, T∞), taking values in �z, which is a classical solution of the Cauchy problem
(1.3)–(1.4) on R3 × [0, T∞). Furthermore,

∇xz(·, t) ∈ C0([0, T∞);Hl). (2.4)

The interval [0, T∞) is maximal, in the sense that whenever T∞ < ∞,

lim
t→T∞

sup ‖∇xz(·, t)‖L∞ = ∞ (2.5)

and/or the range of z(·, t) escapes from every compact subset of �z as t → T∞.

This theorem will be proved by applying Theorem 5.1.1 in Dafermos [1] for hyper-
bolic conservation laws endowed with a strictly convex entropy. We state this theorem
here for readers convenience.
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Theorem A. Assume that the system of conservation laws

Ut +
m∑

α=1

∂xαGα(U) = 0, x ∈ Rm,U ∈ O ⊂ Rn, (*)

is endowed with an entropy η with ∇2η(U) positive definite, uniformly on a compact
subset of O. Suppose the initial data U(x, 0) = U0(x) is continuously differentiable on
Rm, takes values in some compact subset of O and ∇U0 ∈ Hl for some l > m/2. Then
there exists T∞, 0 < T∞ ≤ ∞, and a unique continuously differentiable function U
on Rm × [0, T∞), taking values in O, which is a classical solution of the initial-value
problem (∗) with initial data U0 on [0, T∞). Furthermore,

∇U(·, t) ∈ C0([0, T∞);Hl).

The interval [0, T∞) is maximal, in the sense that whenever T∞ < ∞,

lim
t→T∞

sup ‖∇U(·, t)‖L∞ = ∞,

and/or the range of U(·, t) escapes from every compact subset of O as t → T∞.

Proof of Theorem 2.1. We first rewrite (1.3) or (2.2) in the form of conservation laws,

θt +
3∑

k=1

(f k(θ))xk = 0, (2.6)

where θ = (θ0, θ1, θ2, θ3)
T and f k(θ) = (θk, f

k
1 , f

k
2 , f

k
3 )
T are defined by

θ0 = ρ̂, θj = ρ̃vj ,

f kj = ρ̃vj vk + pδjk, j = 1, 2, 3. (2.7)

By Theorem A, it is sufficient to show that (2.6) has an entropy η(θ) with ∇2η(θ)

positive definite in �z. Such an entropy, due to Makino and Ukai [7], is constructed in
the Appendix of this paper.

Define

φ(ρ) =
∫ ρ

ρm

c2

rc2 + p(r)
dr, K = ρmc

2 + p(ρm), (2.8)

ρm being any fixed number in (ρ∗, ρ∗). The entropy given in (6.25) below is

η = c2ρ̂ − cKeφ(ρ)√
c2 − v2

. (2.9)

We now verify that ∇2η(θ) is positive definite in �z. To this end, we first compute
∇θη(θ). By the chain rule, we have

wT = (∇θη) = (∇zη)(∇zθ)−1,
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where (∇zθ)−1 is defined in (6.10), and wT = (w0, w1, w2, w3) is given by

{
w0 = − c3�(ρ)

(c2−v2)1/2
+ c2,

wj = c�(ρ)

(c2−v2)1/2
vj , j = 1, 2, 3,

(2.10)

with

�(ρ) = Keφ(ρ)

(ρc2 + p)
. (2.11)

We remark thatw can serve as a symmetric variable which reduces (1.3) to a symmetric
hyperbolic system [1, 3]. For the Hessian matrix H of η, we compute

H = ∇2η(θ) = ∇θwT = (∇zwT )(∇zθ)−1

= c�(ρ)E1
(ρc2+p)(c2−v2)1/2

H1

≡ c�(ρ)E1
(ρc2+p)(c2−v2)1/2

(
A1 A2v

T

A2v A3vv
T + A4I3

)
.

(2.12)

Here, E1 = 1
c4−p′v2 is given in (6.11) below, and the Ai are given by

A1 = c4(p′c2 + 2p′v2 + c2v2), A2 = −c2(c4 + 2c2p′ + p′v2),

A3 = (c4 + 2c2p′ + p′v2 + 2p′(c2 − v2)), A4 = (c2 − v2)(c4 − p′v2).
(2.13)

We now show that H is positive definite. From (2.12), we see that it is sufficient
to show H1 is positive definite. Let r = (r0, r

T )T be any 4-vector with r ∈ R3. We
calculate:

rT H1r = (r0, r)

(
A1 A2v

T

A2v A3vv
T + A4I3

)
(r0, r)

T

= (A1r
2
0 + 2A2r0v

T r + A3(v
T r)2 + A4r

2).

Letting Ã1 = (1 − δ)A1 with 1
2 > δ > 0 to be determined in (2.14) below, we have

(A1r
2
0 + 2A2r0v

T r + A3(v
T r)2 + A4r

2)

= Ã1

(
r0 + A2

Ã1
vT r

)2

−
(

1

A1
(A2

2 − A1A3)+ δ

1 − δ

A2
2

A1

)(
vT r

)2 + δA1r
2
0 + A4r

2

≥
(
A4 − 1

A1
(A2

2 − A1A3)v
2 − δ

1 − δ

A2
2

A1
v2

)
r2 + δA1r

2
0

≥
(
p′(c2 − v2)2(c4 − p′v2)

(p′c2 + 2p′v2 + c2v2)
− 2δ

A2
2

A1
v2

)
r2 + δA1r

2
0

≥ δA1r
2
0 + δr2.

Here, we determine δ by

0 < δ + 2δ
A2

2

A1
v2 <

p′(c2 − v2)2(c4 − p′v2)

(p′c2 + 2p′v2 + c2v2)
. (2.14)
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We thus conclude that

rT H1r ≥ (δA1r
2
0 + δr2).

This proves H1 is positive definite in �z. Hence, H is positive definite, and η is strictly
convex on �z. This completes the proof of Theorem 2.1. ��

The existence of a strictly convex entropy guarantees that classical solutions of the
initial-value problem depend continuously on the initial data, even within the broader
class of admissible bounded weak solutions; see [1]. Here, by admissible bounded weak
solution, we mean bounded functions satisfying the initial value problem and entropy
inequality in the sense of distributions. The following Theorem B is Theorem 5.2.1 in
Dafermos [1]:

Theorem B. Assume that the system of conservation laws (∗) is endowed with an entropy
η with ∇2η(U) positive definite, uniformly on compact subset of O. SupposeU is a clas-
sical solution of (∗) on [0, T ), taking values in a convex compact subset N of O, with
initial data U0. Let Ū be any admissible weak solution of (∗) on [0, T ), taking values
in N , with initial data Ū0. Then

∫

|x|<R
|U(x, t)− Ū (x, t)|2 dx ≤ aebt

∫

|x|<R+st
|U0(x)− Ū0(x)|2 dx

holds for any R > 0 and t ∈ [0, T ), with positive constants s, a, depending only on N ,
and a constant b that also depends on the Lipschitz constant of U . In particular, Ū is
the unique admissible weak solution of (∗) with initial data Ū0(x) and values in N .

The following corollary is a consequence of the convexity of η and Theorem B.

Corollary 2.2. Let θ be a classical solution of (2.6) obtained in Theorem 2.1 with initial
data θ0(x) taking values in a compact subset D of�z, and let θ̃ be any admissible weak
solution of (2.6) on [0, T∞), taking values in D , with initial value θ̃0(x) ∈ D. Then

∫

|x|<R
|θ(x, t)− θ̃ (x, t)|2 dx ≤ aebt

∫

|x|<R+st
|θ0(x)− θ̃0(x)|2 dx

holds for any R > 0 and t ∈ [0, T∞), with positive constants s, a, depending only on
D, and a constant b that also depends on the Lipschitz constant of θ . In particular, θ̃ is
the unique admissible weak solution of (2.6) with initial data θ̃0(x) and values in D.

In the next lemma, we will show that a compactly supported perturbation around a
non-vacuum background propagates with finite speed. For this purpose, we consider the
following Cauchy problem






ρ̂t + ∇x • (ρ̃v) = 0,
(ρ̃v)t + ∇x • (ρ̃v ⊗ v)+ ∇xp(ρ) = 0,
(ρ0(x)− ρ̄, v0(x)) = 0, f or |x| ≥ R,

(2.15)

where, R > 0, and 0 < ρ̄ ∈ (ρ∗, ρ∗) satisfies the subluminal condition,

p′(ρ∗) ≤ c2. (2.16)
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Lemma 2.3. Let (ρ, v)(x, t) be a C1 solution of the Cauchy problem (2.15) (equivalent
to (1.3) with the same initial data), where the initial data (ρ0, v0)(x) takes values in a
compact subset of�z (cf. (2.3)). Then the support of (ρ− ρ̄, v)(x, t) is contained in the
ball B(t) = {x : |x| ≤ R + st} where

s =
√
p′(ρ̄)

is the sound speed in the far field.

Proof. This lemma is a consequence of the local energy estimates. It will be proved
using the method of [11] for symmetric hyperbolic systems. For this purpose, we first
observe that w = (∇θη)T given in (2.10) (where η is as in (2.9)) renders the system
(2.15) symmetric hyperbolic [3]:

A0(w)
∂w

∂t
+

3∑

i=1

Ai(w)
∂w

∂xi
= 0, (2.17)

where the coefficient matrices Aα(w) = (Aαmn), α,m, n = 0, 1, 2, 3 are given by (6.5);
that is

A0 = (∇2
θ η)

−1, Ak = (∇θf k)(∇2
θ η)

−1.

We now compute the explicit form of these matrices. First of all, we have

A0 = (∇2
θ η)

−1 = 
(ρ)

(
a1 a2v

T

a2v a3vv
T + a4I3

)
, (2.18)

where I3 is the 3 × 3 identity matrix, and


(ρ) = 1

K
(ρc2 + p)2e−φ(ρ), (2.19)

and

a1 = c4+3p′v2

c3p′(c2−v2)3/2
, a2 = c4+2p′c2+p′v2

c3p′(c2−v2)3/2
,

a3 = c2+3p′
cp′(c2−v2)3/2

, a4 = 1
c(c2−v2)1/2

.
(2.20)

For Ak , k = 1, 2, 3, we first compute

(∇θf k) = (∇zf k)(∇zθ)−1

=
(

0 eTk

[c2(c2 + v2)p′E1ek − c2(c2 + p′)E1vkv] [−C4ve
T
k + vkI3]

)
,
(2.21)

with ek = (δ1k, δ2k, δ3k)
T , where (∇zf k) is given by

(∇zf k) =
(

B3vk B2vkv
T + B4e

T
k

B3vkv + p′ek B2vkvv
T + B4ve

T
k + B4vkI3

)
;
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cf. (6.13) below. Then we have

Ak = (∇θf k)(∇2
θ η)

−1 = (∇θf k)A0

= 
(ρ)

(
a2vk [a3vkv

T + a4e
T
k ]

[a3vkv + a4ek] [a3vkvv
T + a4vkI3 + a4(ekv

T + veTk )]

)
.

(2.22)

It is clear that the matricesAk(w) are all real symmetric and smooth in�z. Furthermore
A0(w) = (∇2η)−1 is positive definite in �z.

Now, we choose ρm = ρ̄ subject to (2.16) for convenience. In this setting, the back-
ground state in the w-variable becomes w̄ = w(ρ̄, 0) = 0. Set

Ãi(w) = (A0(w))−1Ai(w),

and define

Q(λ, ξ) = λI4 −
3∑

α=1

ξαÃ
α(0), (2.23)

where (λ, ξ) ∈ R × S2 (S2 is the unit 2-sphere). Using the real symmetry of Aα(0), for
each ξ ∈ S2, we see that the characteristic equation

detQ(λ, ξ) = 0,

has real roots λi(ξ), i = 0, 1, 2, 3, called the characteristic speeds. Let λ̄ be the largest
absolute value of these characteristic speeds. For any fixed (x0, t0) ∈ R3 × (0, T∞), we
define the family of cones

Cτ = {(s, x) : |x0 − x| ≤ λ̄(t0 − s), 0 ≤ s ≤ τ }, (2.24)

parametrized by τ ∈ [0, t0) and the associated cross sections

Eσ = {(µ, x) ∈ Cτ : µ = σ }. (2.25)

We introduce the linear partial differential operator

P = A0(0)
∂

∂t
+

3∑

α=1

Aα(0)
∂

∂xα
, (2.26)

where again 0 is the background state in the w-variable. Equation (2.17) reads

Pw = (A0(0)− A0(w))
∂w

∂t
+

3∑

α=1

(Aα(0)− Aα(w))
∂w

∂xα
. (2.27)

Now we multiply both sides of (2.27) by 2wT , to get

∂t [wTA0(0)w] +
3∑
α=1

∂
∂xα

[wTAα(0)w]

= 2wT
[
(A0(0)− A0(w)) ∂w

∂t
+

3∑
α=1

(Aα(0)− Aα(w)) ∂w
∂xα

]
.

(2.28)
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We integrate (2.28) over Cτ to obtain

∫

Cτ

3∑

α=0

∂α[wTAα(0)w](x, σ ) dxdσ

=
∫

Cτ

2wT
3∑

α=0

(Aα(0)− Aα(w))∂αw

≤ Cmax
Cτ

|∇w|
∫ τ

0

∫

Eσ

|w|2(x, σ ) dxdσ,

(2.29)

where ∂0 = ∂t , and we have used the mean value theorem in the estimation of the last
step. For the left hand side of (2.29), we want to apply the divergence theorem since
it is in divergence form. For this purpose, we need to determine the boundary of Cτ
and the associated unit outer normal vector. The boundary of Cτ consists of three parts:
the cap Eτ with unit outer normal (1, 0, 0, 0)T , the base E0 with unit outer normal
(−1, 0, 0, 0)T , and along the surface

Rτ = {(σ, x) : |x0 − x| = λ̄(t0 − σ), 0 ≤ σ ≤ τ } (2.30)

the unit outer normal vector is

n = 1√
1 + λ̄2

(λ̄,−νT )T , ν = (x0 − x)

|x − x0| . (2.31)

To see (2.31), we note that on Rτ one has

(λ̄,−νT )T • ((t0 − σ), (x0 − x)T )T = 0.

We now apply the divergence theorem to the left hand side of (2.29),

∫

Cτ

3∑

α=0

∂α[wTAα(0)w](x, τ ) dxdτ

=
∫

Eτ

(wT A0(0)w)(x, τ ) dx −
∫

E0

(wT A0(0)w)(x, 0) dx (2.32)

+ 1√
λ̄2 + 1

∫ τ

0

∫

∂Eσ

(λ̄wT A0(0)w − wT
3∑

α=1

ναA
α(0)w)(x, σ ) dSxdσ,

where dSx denotes the surface element on ∂Eσ . The third term of (2.32) on the right
hand side can be simplified as follows:

(λ̄wT A0(0)w − wT
3∑
α=1

ναA
α(0)w)

= wTA0(0)(λ̄I4 −
3∑
α=1

ναÃ
α(0))w

= wTA0(0)Q(λ̄, ν)w.

(2.33)

We recall that A0(0) > 0 and

A0(0)Q(λ, ν) = λA0(0)−
3∑

α=1

ναA
α(0) (2.34)
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is real symmetric. We claim that for any ν ∈ S2,

A0(0)Q(λ̄, ν) ≥ 0, (2.35)

which will be verified at the end of this proof.
Therefore, we conclude from (2.29), (2.32), (2.33) and (2.35) that

∫

Eτ

(wT A0(0)w)(x, τ ) dx

≤
∫

E0

(wT A0(0)w)(x, 0) dx + C1 max
Cτ

|∇w|
∫ τ

0

∫

Eσ

|w|2(x, σ ) dxdσ.
(2.36)

Since A0(0) > 0, there are positive constants C2 and C3 such that
∫

Eτ

|w|2(x, τ ) dx ≤ C2

∫

E0

|w|2(x, 0) dx + C3

∫ τ

0

∫

Eσ

|w|2(x, σ ) dxdσ,

which, by Gronwall’s inequality implies that
∫

Eτ

|w|2(x, τ ) dx ≤ C2e
C3τ (

∫

E0

|w|2(x, 0) dx). (2.37)

Therefore, if w(x, 0) = 0 for |x − x0| ≤ λ̄t0, then w(x, τ) = 0 for any τ ∈ [0, t0) and
|x − x0| ≤ λ̄(t0 − τ). This implies that, if w(x, 0) = 0 for |x| > R, then w(x, t) = 0
for |x| > R + λ̄t .

The next step is to verify that λ̄ = √
p′(ρ̄). For this purpose, we compute the larg-

est possible characteristic speed at a constant background state. Now we compute the
eigenvalues of

3∑

α=1

ξαÃ
α(0), ξ ∈ S2. (2.38)

Since

Ãα = (∇2
θ η)(∇θf α)(∇2

θ η)
−1,

the matrix in (2.38) is similar to the matrix

M(ξ) =
3∑

α=1

ξα∇θf α(θ̄), ξ ∈ S2, (2.39)

where θ̄ = (ρ̄, 0, 0, 0)T is the background state in the θ -variable. It is easy to compute:

∇θf α(θ̄) = ∇zf α(∇zθ)−1|ρ=ρ̄,v=0

=
(

0 eTα
p′(ρ̄)eα 0

)
,

(2.40)

where ei = (δ1i , δ2i , δ3i )
T . Thus, one has

M(ξ) =
(

0 ξT

p′(ρ̄)ξ 0

)
. (2.41)
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Now we claim that M(ξ) has rank 2. This can be seen by

MMT =
(

1 0
0 p′(ρ̄)2ξξT

)
,

since rank(ξξT ) = 1. Thus, M(ξ) has two non-zero eigenvalues and two zero eigen-
values. We need to find all non-zero eigenvalues of M(ξ). We compute

0 = det(M(ξ)− rI4) = det

( −r ξT

p′(ρ̄)ξ −rI3

)

= det

(
0 ξT

(p′(ρ̄)− r2)ξ −rI3

)

= (p′(ρ̄)− r2) det

(
0 ξT

ξ −rI3

)
,

(2.42)

and this implies ±√p′(ρ̄) are the two distinct non-zero eigenvalues ofM(ξ). Therefore,
we have

λ̄ =
√
p′(ρ̄). (2.43)

Notice that we did not use (2.35) to obtain (2.43).
The last step is to verify (2.35). Since λ̄ = s = √

p′(ρ̄), we have

A0(0) = K

c2

( 1
s2 0
0 I3

)
, Aα(0) = K

c2

(
0 eTα
eα 0

)
, α = 1, 2, 3,

and thus

A0(0)Q(λ̄, ν)) = K

c2

(
1
s

−νT
−ν sI3

)
. (2.44)

Let r = (r0, r
T )T be any 4-vector with r ∈ R3, we compute:

rT A0(0)Q(λ̄, ν))r = K
c2 (r0, r

T )

(
1
s

−νT
−ν sI3

)
(r0, r

T )T

= K

c2 (
1

s
r2

0 − 2r0ν
T r + s|r|2)

≥ K

c2 (
1

s
r2

0 − 2r0|r| + s|r|2)

= K

sc2 (r
2
0 − 2sr0|r| + s2|r|2)

= K

sc2 (r0 − s|r|)2 ≥ 0.

(2.45)

Here, we have used

(νT r) ≤
√
(ν2)(r2) = |r|.

Thus, we have proved (2.35). The proof of this lemma is complete. ��
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3. Singularity Formation: Infinite Energy Case

In this section, we prove the singularity formation of smooth solutions of (2.15) when
the initial radial “generalized” momentum is large. To begin, we prove the following
two easy but useful identities.

Lemma 3.1. ρ̂ and ρ̃ satisfy the following identities:

ρ̂ = 1
c2 ρ̃v

2 + ρ,

ρ̃ = 1
c2 ρ̃v

2 + (ρ + p

c2 ).
(3.1)

Proof. From (2.1), it is easy to see

ρ̂ =
[
ρc2 + p

c2 − v2 − p

c2

]

= ρc4 + pc2 − pc2 + pv2

c2(c2 − v2)

= ρc2c2 + pv2

c2(c2 − v2)

= ρc2v2 + ρc2(c2 − v2)+ pv2

c2(c2 − v2)

= ρc2 + p

c2(c2 − v2)
v2 + ρc2(c2 − v2)

c2(c2 − v2)

= 1

c2 ρ̃v
2 + ρ.

Hence, ρ̃ = ρ̂ + p

c2 implies

ρ̃ = 1

c2 ρ̃v
2 + ρ + p

c2 .

��
We again denote the sound speed in the far field by

s =
√
p′(ρ̄),

and define the following quantities:

M(t) =
∫

[ρ̂(ρ, v)− ρ̂(ρ̄, 0)](x, t) dx,

F (t) =
∫
ρ̃v • x dx.

(3.2)

By Lemma 2.3, both M(t) and F(t) are well-defined as long as the smooth solution
exists. Using these two quantities, we shall show that the smooth solution of (2.15)
obtained in Theorem 2.1 blows up in finite time if the initial data is subject to some
restrictions. Roughly speaking, if M(0) > 0, and F(0) > 0 is sufficiently large, then
the solution will blow up in finite time.
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Theorem 3.2. Assume that the initial data of (2.15) and ρ̄ are chosen such thatM(0) >
0, F(0) > 0 and s2 < 1

3c
2. If

F(0) > � = 32πs

3(1 − 3s2

c2 )
R4 max ρ̂0(x),

then the smooth solution of the Cauchy problem (2.15) obtained in Theorem 2.1 blows
up in finite time.

Proof. Using Lemma 3.1, we know that

ρ̂(ρ, v) = 1

c2 ρ̃v
2 + ρ,

thus,

ρ̂(ρ̄, 0) = ρ̄. (3.3)

This implies that

ρ − ρ̄ = (ρ̂(ρ, v)− ρ̂(ρ̄, 0))− 1

c2 ρ̃v
2. (3.4)

From the first equation of (3.2), it is easy to see that

d

dt
M(t) =

∫
(ρ̂(ρ, v)− ρ̂(ρ̄, 0))t dx

=
∫
ρ̂t dx

= −
∫

∇x • (ρ̃v) dx
= 0,

where we have used the first equation in (2.2) or (2.15). Hence,

M(t) = M(0) =
∫
(ρ̂0(x)− ρ̄) dx > 0. (3.5)

Using the second equation in (2.2) and (3.2), we compute

F ′(t) =
∫
(ρ̃v)t • x dx

= −
∫

[∇ • (ρ̃v ⊗ v)+ ∇p(ρ)] • x dx.
(3.6)

But if p̄ = p(ρ̄), we have

∇p • x = ∇(p − p̄) • x
= ∇ • [x(p − p̄)] − (p − p̄)∇ • x
= ∇ • [x(p − p̄)] − 3(p − p̄).

(3.7)
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We also note that

∇ • (ρ̃v ⊗ v) • x =
3∑

i,j=1
∂xi (ρ̃vivj )xj

=
3∑

i,j=1
[∂xi (ρ̃vivj xj )− ρ̃vivj ∂xi xj ]

=
3∑

i,j=1
[∂xi (ρ̃vivj xj )− ρ̃vivj δij ]

= −ρ̃v2 +
3∑
j=1

∇ • (ρ̃v ⊗ vxj ),

(3.8)

where v2 = vT v. Inserting (3.7) and (3.8) into (3.6), and using the divergence theorem,
we obtain

F ′(t) =
∫
ρ̃v2 dx + 3

∫
(p − p̄) dx. (3.9)

Since p′′(ρ) ≥ 0, p′(ρ) is a non-decreasing function of ρ. It is clear that

p(ρ)− p(ρ̄) =
∫ ρ

ρ̄

p′(ξ) dξ ≥ p′(ρ̄)(ρ − ρ̄). (3.10)

Thus, using (3.4) and (3.5), one has

F ′(t) ≥
∫
ρ̃v2 dx + 3s2

∫
(ρ − ρ̄) dx

=
∫
ρ̃v2 dx + 3s2M(t)− 3s2

c2

∫
ρ̃v2 dx

=
(

1 − 3s2

c2

)∫
ρ̃v2 dx + 3s2M(0)

≥
(

1 − 3s2

c2

)∫
ρ̃v2 dx.

(3.11)

On the other hand, we have the following estimate:

F 2(t) = (

∫
ρ̃v • x dx)2

≤ (

∫

B(t)

|x|2ρ̃ dx)(
∫

B(t)

ρ̃v2 dx)

≤ 2(
∫

B(t)

|x|2ρ̂ dx)(
∫

B(t)

ρ̃v2 dx),

(3.12)

where we have used the following fact:

ρ̃ ≤ 2ρ̂. (3.13)

To see this, we note that from the subluminal condition p′(ρ) < c2, together with
p(0) = 0, we get p(ρ) ≤ c2ρ. Thus

ρ̃ = 1

c2 ρ̃v
2 + ρ + p

c2 ≤ 1

c2 ρ̃v
2 + 2ρ = ρ̂ + ρ ≤ 2ρ̂.
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Due to (3.3) and (3.5), we have the following estimate:
∫

B(t)

ρ̂|x|2 dx ≤ (R + st)2
∫

B(t)

ρ̂ dx

= (R + st)2(M(t)+
∫

B(t)

ρ̄ dx)

= (R + st)2(M(0)+
∫

B(t)

ρ̄ dx)

= (R + st)2
∫

B(t)

ρ̂0(x) dx

≤ 4π

3
(R + st)5(max ρ̂0(x)).

(3.14)

Hence, (3.12) gives

F 2(t) ≤ 8π

3
(R + st)5(max ρ̂0(x))(

∫

B(t)

ρ̃v2 dx)

≡ K0(R + st)5(

∫

B(t)

ρ̃v2 dx),
(3.15)

where

K0 = 8π

3
(max ρ̂0(x)). (3.16)

Thus (3.11) and (3.15) imply that

F ′(t) ≥
(

1 − 3s2

c2

)
K−1

0 (R + st)−5F 2(t), (3.17)

so

F ′

F 2 ≥ K1(R + st)−5, (3.18)

where K1 = (1 − 3s2

c2 )K
−1
0 . Integrating (3.18) with respect to t , one has

1

F(t)
≤ 1

F(0)
− K1

4s
[R−4 − (R + st)−4] ≡ ψ(t). (3.19)

Now ψ(0) = 1
F(0) > 0 by assumption, and

ψ(+∞) = 1

F(0)
− K1

4s
R−4 < 0,

if

F(0) >
4sR4

K1
≡ �. (3.20)

Therefore,

1

F(t0)
= 0, f or some t0 > 0. (3.21)

Thus the life-span T of smooth solutions satisfies T < t0. This completes the proof of
Theorem 3.2. ��
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4. Singularity Formation: Finite Energy Case

Due to the hyperbolic nature of Einstein equations, one expects the finite propagation
speed of waves in the solutions. We will prove in the following lemma that for any
smooth solution with compactly supported initial data, the support of the solution is
invariant in time.

Lemma 4.1. Let (ρ, v)(x, t) be a smooth solution of the Cauchy problem (1.3)–(1.4) up
to some time T > 0. If the support of initial data is contained in the ball BR(0) centered
at the origin with radius R, then the support of (ρ, v)(x, t) is contained in the same ball
BR(0) for any t ∈ [0, T ).

Proof. Assume that the initial support of the solution is contained in a ball BR(0), the
support of the smooth solution will remain compact by the hyperbolic nature of the
system (1.3). We denote by x(t; x0) the particle path starting at x0 when t = 0, i.e.,

d

dt
x(t; x0) = v(x(t; x0), t), x(t = 0; x0) = x0, (4.1)

and by Sp(t) the closed region that is the image of BR(0) under the flow map (4.1).
Hence, the support of the smooth solution of (1.3)–(1.4) will remain inside Sp(t). Thus,
fixing any x0 on the boundary of BR(0), we have ρ0(x0) = 0 and v0(x0) = 0, and
x(t; x0) is on the boundary of Sp(t). Furthermore,

d

dt
x(t; x0) = v(x(t; x0), t) = 0, (4.2)

due to continuity of v(x, t) and the fact that x(t; x0) sits at the boundary of the support
of the solution. Therefore, x(t; x0) = x0 for any t ∈ [0, T ) whenever |x0| = R. Hence,
Sp(t) = BR(0). This proves this lemma. ��

Based on Lemma 4.1, we shall prove the following blowup result.

Theorem 4.2. Suppose the support of the smooth functions (ρ0(x), v0(x)) is non-empty
and contained in a ball BR(0) centered at the origin with radius R. Then the smooth
solution of (1.3)-(1.4) with the initial data (ρ0(x), v0(x)) blows up in finite time.

Proof. We first introduce the following functions:

H(t) = 1

2

∫
ρ̂|x|2 dx, F (t) =

∫
ρ̃v • x dx, E(t) =

∫
ρ̂ dx. (4.3)

Here,H(t) is the second moment of ρ̂, F(t) is the total radial “generalized” momentum,
andE(t) is the total “generalized” energy. These functions are well defined in the domain
where the smooth solutions exist. Interesting relations between them can be obtained by
the following calculations.
E(t) is conserved, because using (2.2) one has

E′(t) =
∫
ρ̂t dx = −

∫
∇x • (ρ̃v) dx = 0.

We thus have

E(t) = E(0) =
∫
ρ̂0(x) dx > 0, (4.4)
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for non-trivial initial data.
For H(t), we have

H ′(t) = 1

2

∫
ρ̂t |x|2 dx

= −1

2

∫
[∇x • (ρ̃v)]|x|2 dx

=
∫
ρ̃v • x dx

= F(t),

(4.5)

where we have used the relation

[∇x • (ρ̃v)]|x|2 = ∇x • (ρ̃v|x|2)− ρ̃v • 2x.

From the second equation in (2.2) and integrating by parts, we have

H ′′(t) = F ′(t) =
∫
(ρ̃v)t • x dx

= −
∫
([∇x • (ρ̃v ⊗ v)] • x + (∇xp • x)) dx

=
∫
ρ̃v2 dx +

∫
3p dx

= c2
∫

BR(0)
(

1

c2 ρ̃v
2 + 3p

c2 ) dx.

(4.6)

By Jensen’s inequality, we have

∫

BR(0)
p(ρ) dx =

(
4π

3
R3
) ∫

BR(0)
p(ρ) dx

( 4π
3 R

3
)

≥ (
4π

3
R3)p

(∫
BR(0)

ρ dx

( 4π
3 R

3)

)
,

(4.7)

so (4.6) and (4.7) imply

H ′′(t) ≥ c2
[∫

BR(0)

1

c2 ρ̃v
2dx + 3

c2 (
4π

3
R3)p(ρB)

]

≡ c2N(t),

(4.8)

where

ρB =
∫
BR(0)

ρ dx

( 4π
3 R

3)

is the mean density over BR(0). Since

E(t) = E(0) =
∫

BR(0)

(
1

c2 ρ̃v
2 + ρ

)
dx,
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it is possible to bound N(t) from below using E(0). We consider two cases. First if
∫

BR(0)

1

c2 ρ̃v
2 dx ≥ 1

2
E(0),

we get

N(t) ≥ 1

2
E(0). (4.9)

On the other hand, if
∫

BR(0)

1

c2 ρ̃v
2 dx ≤ 1

2
E(0),

then as

E(t) = E(0) =
∫

BR(0)

(
1

c2 ρ̃v
2 + ρ

)
dx ≤ 1

2
E(0)+

∫

BR(0)
ρ dx,

we have
∫

BR(0)
ρ dx ≥ 1

2
E(0).

Thus

N(t) ≥ 3

c2 (
4π

3
R3)p(ρB)

≥ 3

c2 (
4π

3
R3)p(

1

2
EB(0))

≡ B1E(0) > 0,

(4.10)

where B1 = 4πR3

c2E(0)
p( 1

2EB(0)), and EB(0) = E(0)
( 4π

3 R
3)

. Define B = c2 min{ 1
2 , B1}; then

(4.8)–(4.10) imply that

H ′′(t) ≥ BE(0) > 0. (4.11)

This gives a lower bound on H(t):

H(t) ≥ 1

2
BE(0)t2 + F(0)t +H(0). (4.12)

In order to refine (4.12), we estimate F(t) in terms of H(t) and E(t). Using (3.10),
we have

|F(t)| = |
∫
(ρ̃v • x) dx|

≤ (

∫
ρ̃|x|2 dx) 1

2 (

∫
ρ̃v2 dx)

1
2

≤
√

2H(t)
1
2 (c2E(t))

1
2

= c
√

2[H(t)E(t)]
1
2

≡ D[H(t)E(t)]
1
2 .

(4.13)



748 R. Pan, J.A. Smoller

We derive from (4.12) and (4.13) that

H(t) ≥ 1

2
BE(0)t2 −D[H(0)E(0)]

1
2 t +H(0). (4.14)

We note that (4.14) implies that H(t) tends to infinity as t goes to infinity. However,
we have the following uniform upper bound for H(t):

H(t) = 1

2

∫
ρ̂|x|2 dx

= 1

2

∫

BR(0)
ρ̂|x|2 dx

≤ 1

2
R2
∫
ρ̂ dx

= 1

2
E(0)R2.

(4.15)

Thus (4.12) or (4.14) together with (4.15) imply that the life-span of the smooth solutions
must be finite if E(0) > 0. This completes the proof of Theorem 4.2. ��

Notice that, for non-trivial initial data, we have

H(0)− 1

2
E(0)R2

= 1

2

∫
ρ̂0|x|2 dx − 1

2
R2
∫
ρ̂0 dx

= 1

2

∫

BR(0)
ρ̂0(|x|2 − R2) dx

< 0.

(4.16)

This enables us to estimate the life-span as follows: from (4.14) and (4.15) we have for
smooth solutions

1

2
BE(0)t2 −D

√
H(0)E(0)t +H(0) ≤ 1

2
E(0)R2.

This is equivalent to

φ(t) = Bt2 − 2Ddt + 2d2 − R2 ≤ 0, (4.17)

where d2 = H(0)
E(0) , and φ(0) < 0 by (4.16). Hence, the life-span T of the smooth solution

satisfies

T ≤ Dd + √
D2d2 − 2Bd2 + R2B

B
. (4.18)
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5. Concluding Remarks

We have proved the blowup of smooth solutions of relativistic Euler equations in both
cases: finite initial energy (Theorem 4.2) and infinite initial energy (Theorem 3.2). In
contrast to the characteristic method, we adapted the approach via some functions: total
“generalized” energy, total radial “generalized” momentum, and the second moment.
Our approach depends on the beautiful structure of the equations and several quantities
constructed from the natural variables; cf. Lemma 3.1. Although the relativistic Euler
equations are much more complicated than the classical Euler equations, these structures
make our proofs possible. We will now make some remarks on our results and discuss
some related issues.

Remark 1. In our blowup theorems, the velocity in the far field is assumed to be zero
initially. For the more general case, say v0(x) = v̄ off a bounded set, the change of
variables (Sideris [11])

v → v − v̄, x → x + t v̄

will reduce this problem to the case we considered.

Remark 2. The condition

p′(ρ̄) <
c2

3

in Theorem 3.2 arises naturally in the proof. Here, 3 is the spatial dimension. In d dimen-
sions, 3 is replaced by d . In particular, for d = 1, this condition is that the sound speed
is subluminal. For p(ρ) = σ 2ρ, d = 1, this condition guarantees the genuinely nonlin-
earity of the relativistic Euler equations and allows the existence of global solutions in
BV; see Smoller and Temple [14]. This condition is not required in Theorem 4.2.

Remark 3. Our blowup results crucially depend on the compact support of the perturba-
tions. Singularity formation for more general initial data remains open.

Remark 4. The type of singularity which occurs is another open problem. The possibil-
ities are: a) shock formation, b) violation of the subluminal conditions; e.g. |v| tends to
c, or p′(ρ) → c2, c) concentration of the mass.

For p(ρ) = σ 2ρ and d = 1, the singularity must be a shock if the initial data is away
from the vacuum. It was shown in Smoller and Temple [14] that weak solutions exist
globally in time with bounded total variation, subluminal velocity and positive density
uniformly bounded from above and below. Furthermore, Smoller and Temple proved in
[14] that the subluminal condition guarantees the genuine nonlinearity of the equations,
so one concludes that the singularities in the solutions must be shocks by Lax’ theory [4].
It would be interesting to clarify the types of singularities for relativistic Euler equations
in multi-dimensions. However, black hole formation is impossible for our problem, since
our spacetime is fixed to be flat Minkowski spacetime.

Remark 5. The singularity in our Theorem 3.2 looks like shock formation. The largeness
condition in radial “generalized” momentum, (3.20), implies that the particle velocity
must be supersonic in some region relative to the sound speed at infinity. One can guess
that the singularity formation is detected as the disturbance overtaking the wave front
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thereby forcing the front to propagate with supersonic speed. To see these things, we
argue as follows. Using the fact ρ̃ ≤ 2ρ̂(cf. (3.13)), one has

F(0) ≤ 8π

3
R4(max ρ̂0(x))max |v0(x)|, (5.1)

while

� = 4s

1− 3s2

c2

8π
3 R

4 max ρ̂0(x)

≥ 4s 8π
3 R

4(max ρ̂0(x)).
(5.2)

Hence, F(0) > � implies that

max |v0(x)| ≥ 4s. (5.3)

This insures the initial particle velocity is supersonic in some region. However, the
rigorous proof of shock formation is still open.

Remark 6. The lower bound of the initial radial “generalized” momentum in (3.20)
depends on the initial velocity through ρ̂. This is different from the Newtonian case,
where ρ̂ is replaced by ρ and so in the Newtonian case it does not depend on the veloc-
ity. On the other hand, the velocity has to be subluminal. Therefore, we must show that
the set of initial data required in Theorem 3.2 is non-empty. From (5.1)–(5.3), we find
the set is non-empty if

c > max |v0(x)| ≥ 4s

1 − 3s2

c2

. (5.4)

A simple calculation shows that the necessary condition for s to satisfy is

s <

(√
7

3
− 2

3

)
c. (5.5)

Since ρ̃ ≥ ρ̂,F(0) is of the same order as the upper bound in (5.1). Thus, if s is chosen to
be small (this can be done by choosing ρ̄ small), one can easily find initial data satisfying
the conditions required in Theorem 3.2.

Remark 7. The equation of state p(ρ) satisfying (1.5) is quite general for isentropic
fluids. It can be weakened by replacing p′′(ρ) ≥ 0 with p′(ρ) non-decreasing. This
includes the well-known γ -law, p(ρ) = σ 2ργ , γ ≥ 1 as a particular case. In fact, in
the case of a γ -law, (3.13) can be refined, and thus (3.20) can be replaced by a weaker
condition, as we now show.

When γ = 1, s = σ . Equation (3.13) is refined as ρ̃ < (1 + σ 2

c2 )ρ̂ = ρ̃ + σ 2

c4 ρ̃v
2 by

Lemma 3.1. Thus, (3.20) can be weakened to:

F(0) > �1 = 4σ

1 − 3σ 2

c2

(
1 + σ 2

c2

)
4π

3
R4 max ρ̂0(x). (5.6)

When γ > 1, we observe that the subluminal condition

p′(ρ) = γ σ 2ργ−1 ≤ c2
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implies that p

c2 ≤ 1
γ
ρ. Thus,

(
1 + 1

γ

)
ρ̂ = ρ̂ + 1

γ
ρ + 1

γ c2 ρ̃v
2

≥ ρ̂ + 1

γ
ρ

≥ ρ̂ + p

c2 = ρ̃.

We can thus refine (3.13) to ρ̃ < (1 + 1
γ
)ρ̂, and then (3.20) is replaced by the following

weaker condition:

F(0) > �2 = 4s

1 − 3s2

c2

(
1 + 1

γ

)
4π

3
R4 max ρ̂0(x). (5.7)

6. Appendix

For the reader’s convenience, we justify the construction of a strictly convex entropy
function for (1.3) due to Makino and Ukai in [7], and we will also correct several errors.
To this end, we first record (2.6)–(2.7) here ,

θt +
3∑

k=1

(f k(θ))xk = 0, (6.1)

where θ = (θ0, θ1, θ2, θ3)
T and f k(θ) = (θk, f

k
1 , f

k
2 , f

k
3 ) are defined by

θ0 = ρ̂, θj = ρ̃vj ,

f kj = ρ̃vj vk + pδjk, j = 1, 2, 3. (6.2)

The scalar function η = η(θ) is called an entropy function and scalar functions qk(θ),
k = 1, 2, 3 are called entropy flux functions, if they satisfy:

∇θη(θ)∇θf k(θ) = ∇θ qk(θ). (6.3)

Since the the right-hand side of (6.3) is a gradient of the function qk , the relevant inte-
grability condition (cf. [1], p. 39) is

(∇2
θ η)(∇θf k) = (∇θf k)T (∇2

θ η). (6.4)

If we find such an η that is strictly convex, the change of variables θ → w = (∇θη)T
will render (6.1) into the symmetric form (2.17); see [1], where

A0 = (∇2
θ η)

−1, Ak = (∇θf k)(∇2
θ η)

−1. (6.5)

To see this, we apply chain rule:

∂αθ = (∇θw)−1∂αw = (∇2
θ η)

−1∂αw. (6.6)
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Substituting (6.6) into (6.1), we obtain

(∇2
θ η)

−1wt +
3∑

k=1

(∇θf k)(∇2
θ η)

−1wxk = 0.

A0 is positive definite if and only if η is strictly convex. To verify the real symmetry of
Ak , we use (6.4). Multiplying both sides of (6.4) by (∇2

θ η)
−1 on the left and right, we

see Ak = (Ak)T .

We will solve (6.3) keeping the mechanical energy of classical Euler equations in
mind. Thus, instead of θ , we will use z = (ρ, v1, v2, v3)

T as independent variables. We
compute:

∇zθ =
(
B1 B2v

T

B3v B2vv
T + B4I3

)
, (6.7)

where

B1 = c2+p′
c2−v2 − p′

c2 , B2 = 2 ρc2+p
(c2−v2)2

,

B3 = c2+p′
c2−v2 , B4 = ρc2+p

c2−v2 .
(6.8)

Moreover,

det (∇zθ) = (ρc2 + p)3(c4 − v2p′)
c2(c2 − v2)4

> 0, (6.9)

in �z. We can thus compute the inverse of ∇zθ :

(∇zθ)−1 =
(

c2(c2 + v2)E1 −2c2E1v
T

−c2(c2 + p′)E1E2v 2p′E1E2vv
T + E2I3

)
, (6.10)

with

E1 = 1

c4 − p′v2 , E2 = c2 − v2

ρc2 + p
. (6.11)

Based on (6.10), we will solve (6.3) using z as independent variables for convenience.
In the z-variables, (6.3) becomes

∇zηCk = Dzq
k, k = 1, 2, 3, (6.12)

where

(∇zf k) =
(

B3vk B2vkv
T + B4e

T
k

B3vkv + p′ek B2vkvv
T + B4ve

T
k + B4vkI3

)
, (6.13)

and

Ck = (∇zθ)−1(∇zf k)

=
(

c2C1vk C3e
T
k

−C1C2vkv + C2ek −C4ve
T
k + vkI3

)
,

(6.14)



Blowup of Smooth Solutions for Relativistic Euler Equations 753

with

C1 = c2−p′
c4−p′v2 , C2 = p′E2 = p′(c2−v2)

ρc2+p ,

C3 = c2(ρc2+p)
c4−v2p′ , C4 = p′(c2−v2)

c4−p′v2 .
(6.15)

Formally, (6.12) is an over-determined system, consisting of 12 equations for 4 unknowns.
We seek solutions with the special form:

η = η(ρ, y), qk = Q(ρ, y)vk, y = v2 = v2
1 + v2

2 + v2
3 (6.16)

to reduce the number of equations in (6.12). Substituting this ansatz into (6.12), we
obtain the following first order linear system:






ηy = Qy,

c2C1ηρ + 2C2(1 − C1y)ηy = Qρ,

C3ηρ − 2C4yηy = Q.

(6.17)

This seems still an over-determined system. However, it is possible to derive a decou-
pled equation for Q from (6.17). We first multiply the second equation of (6.17) by
(ρ2c2 + p), and using (c2 − p′)C3 = c2C1(ρ

2c2 + p), we have

(c2 − p′)C3ηρ + 2C2(ρc
2 + p)(1 − C1y)ηy = (ρc2 + p)Qρ. (6.18)

Then, we compute (c2 − p′)× (6.17)3:

(c2 − p′)C3ηρ − 2(c2 − p′)C4yηy = (c2 − p′)Q. (6.19)

We subtract (6.19) from (6.18) and substitute ηy with Qy , using (6.15); this reduces
(6.17) into the following decoupled system:

{
ηy = Qy,

2(c2 − y)p′Qy = (ρc2 + p)Qρ − (c2 − p′)Q.
(6.20)

We now proceed to solve (6.20) with the help of (6.17). First, (6.20)1 gives

η = Q(ρ, y)+G(ρ). (6.21)

Substitute this into (6.17)3 to get

Gρ = c2 − y2

ρc2 + p
Q− c2 − y2

c2 Qρ,

or equivalently

Gρ = 1

ρc2 + p
q − 1

c2 qρ, q = (c2 − y)Q. (6.22)

We observe that G depends on ρ only, so we have a linear first order ODE for q,

1

ρc2 + p
q − 1

c2 qρ = f (ρ)

c2 ,
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which has the solution

q(ρ) = eφ(ρ)(g(ρ)+ h(y)). (6.23)

Here φ(ρ) is defined in (2.8). Substituting (6.23) into (6.20)2, and separating variables,
one has

ρc2 + p

p′
dg

dρ
− g = 2(c2 − y)

dh

dy
+ h = m(ρ, y), (6.24)

where the first term in (6.24) is independent of y, while the second term is independent
of ρ. Thus, m is independent of both ρ and y. We conclude that m = const. Thus, by
integrating (6.24), we have

q = D1(ρc
2 + p)+D2e

φ(ρ)
√
c2 − v2,

G = −D1
c2 p +D3,

Q = D1
ρc2+p
c2−v2 +D2

eφ(ρ)√
c2−v2 ,

η = D1
ρc2+p
c2−v2 +D2

eφ(ρ)√
c2−v2 − D1

c2 p +D3,

(6.25)

where D1, D2 and D3 are integration constants. With K as in (2.8), one choice is

D1 = c2, D2 = −cK, D3 = 0,

thus

η = c2ρ̂ − cKeφ(ρ)√
c2 − v2

. (6.26)

The associated entropy-flux is (q1, q2, q3)T defined by

qk = c2(ρc2 + p)

c2 − v2 vk − cKeφ(ρ)√
c2 − v2

vk. (6.27)

Moreover η is strictly convex as was verified in Sect. 2.
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