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Abstract We investigate the zero dissipation limit problem of the one dimensional compressible isentropic

Navier-Stokes equations with Riemann initial data in the case of the composite wave of two shock waves. It is

shown that the unique solution to the Navier-Stokes equations exists for all time, and converges to the Riemann

solution to the corresponding Euler equations with the same Riemann initial data uniformly on the set away

from the shocks, as the viscosity vanishes. In contrast to previous related works, where either the composite

wave is absent or the effects of initial layers are ignored, this gives the first mathematical justification of this

limit for the compressible isentropic Navier-Stokes equations in the presence of both composite wave and initial

layers. Our method of proof consists of a scaling argument, the construction of the approximate solution and

delicate energy estimates.
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1 Introduction

The asymptotic behavior of viscous flows in vanishing dissipation limit process is one of the important,

longstanding problems in the theory of compressible fluid flow. It is expected that the solution to

viscous flows should converge strongly, when dissipation vanishes, to the solution to the corresponding

inviscid flow. When the solution to the inviscid flow is smooth, this problem can be solved by classical

Hilbert expansion along with energy method. However, the inviscid compressible flow usually contains

discontinuities, such as shock waves and contact discontinuities, which have so far prevented solving the

problem in the general setting by means of known analytic tools. Essential new ideas and methods are

needed to tackle this open problem. Therefore, any attempt on this problem that involves the singularity

in the inviscid solution can be viewed as progress to this general program.

In one space dimension, interesting progress has been made on system of hyperbolic conservation laws

with artificial viscosity ut + f(u)x = ϵuxx. Using a matched asymptotic expansion method, Goodman
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and Xin [8] proved that, given any piecewise smooth entropy solution with finitely many non-interacting

shock waves of the inviscid conservation laws, the above viscous problem admits a sequence of smooth

solutions converging to the given invisid solutions in vanishing viscosity limit. Later, Yu [44] improved the

results of [8] to allow initial layers by a detailed pointwise analysis. Recently, Zeng [46] proved the large

time asymptotic nonlinear stability of a superposition of shock waves with contact waves for the fixed

viscosity ϵ = 1. In the context of small BV initial data, the seminal result of Bianchini and Bressan [1]

proved the the vanishing viscosity limit of solutions of this viscous hyperbolic system by deriving the

uniform BV estimates of solutions independent of the viscosity. This fully settled the problem in small

BV case when viscosity matrix is ϵI. However, the problem is still unsolved for physical systems such as

the Navier-Stokes equations.

In this paper, we study the zero dissipation limit of the solutions to the Navier-Stokes equations of

compressible, isentropic gases which, in Lagrangian formulation, can be written as (see [5]):
vt − ux = 0,

ut + p(v)x = ϵ

(
ux
v

)
x

,
(1.1)

where u, v and p denote the fluid velocity, the specific volume, and the pressure in a compressible fluid,

respectively, while ϵ > 0 is the constant viscosity coefficient. The pressure p is assumed to be a smooth

function of v > 0 satisfying

p′(v) < 0 < p′′(v), for v > 0. (1.2)

For example, (1.2) holds for polytropic and ideal isothermal gases, for which p(v) = Cv−γ , γ > 1.

We consider the Cauchy problem for (1.1) with Riemann initial data

U(x, 0) =

[
v(x, 0)

u(x, 0)

]
=

{
U−, x < 0,

U+, x > 0,
(1.3)

where U± are given constant states. We are especially interested in the relation between the Navier-Stokes

solutions, U ϵ(x, t) to (1.1) and (1.3), and solutions U0(x, t) to the corresponding Euler equations{
vt − ux = 0,

ut + p(v)x = 0
(1.4)

with the same Riemann initial data (1.3).

Although the zero dissipation limit for compressible Naiver-Stokes equations remains as an important

open problem, many interesting results were achieved in the past. These results roughly fall into three

categories. The first is to use theory of compensated compactness to establish the compactness of the

sequence of solutions of the Navier-Stokes equations, and then to extract a subsequence to converge to a

limit, which was later justified as a weak solution to the corresponding compressible Euler equations. The

representative results are obtained by DiPerna [7] with initial data inH2, and by Chen and Pereperitsa [4]

with suitable smooth initial data. Although the class of initial data in these theories are fairly broad,

Riemann data, which are building blocks for the inviscid Euler equations (1.3), are specifically excluded,

and the abstract analysis yields little information on the qualitative nature of the viscous solutions. The

second kind of results utilizes recent development of nonlinear stability analysis results on elementary

waves for compressible Navier-Stokes equations. Motivated by early work of Xin [41] for rarefaction waves,

and Goodman and Xin [8] for solution with shock waves, exciting advancement has been made in this

direction. It was shown that, given a solution to the compressible Euler equations (1.4) which is piecewise

smooth and contains simple wave patterns, there exists a sequence of solutions of the compressible Navier-

Stokes equations that converges to the pre-fixed Euler solution in zero dissipation limit. The advantage

of this approach is that it can be generalized to general system, and the explicit construction of the

viscous solutions gives detailed structure of solutions along with explicit convergence rate. The possible

disadvantage of this approach is that this kind of results are often valid only for finite time when shock
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presents, and the convergence is good only for the preferred (or constructed) sequence of viscous solutions.

We refer the readers to [2, 3, 6, 16, 18, 19, 21, 22] for a partial list of results in this direction. Last but not

least, Hoff and Liu [9] proposed a framework to study directly the compressible Navier-Stokes equations

with Riemann data, established sharp and uniform estimates, analyzed the detailed behavior of the

solutions in initial, intermediate, and large time regimes, and finally proved the zero dissipation limit

to the Riemann solutions of compressible Euler equation. Comparing with the second category, this

program is different in at least four aspects. First, rather than the preferred sequence with approximate

initial data, this program shows uniform convergence of Navier-Stokes system with fixed same data as

Euler. Second, the stability analysis component in this program has large initial perturbation. Third,

this program takes care of both shock waves and initial layers. Finally, the convergence result of this

program is globally, not only for a finite time. So far, except for Hoff and Liu [9] where the isentropic

Naver-Stokes (1.1) with a single shock wave initial data was solved, no much development appeared in the

past two decades. The main motivation of this paper is to extend this result to the case of the composite

wave of two shock waves. In particular, we prove that the solutions of the compressible isentropic Navier-

Stokes system (1.1) with Riemann initial data (1.3) exist for all time, and converge to the Riemann

solution to the Euler equations with the same Riemann initial data that is a composite wave of two shock

waves, as the viscosity tends to zero. This gives the first mathematical justification of this limit for the

compressible isentropic Navier-Stokes equations in the presence of both composite wave and initial layers.

For other related works, the readers are referred to [23–25,30,31,42,43,48].

Now, we introduce some preliminary notations and give some background materials before stating

the main theorem. It is known that the system (1.4) has two eigenvalues: λ1 = −
√

−p′(v) < 0, λ2 =√
−p′(v) > 0, where two characteristic fields are genuinely nonlinear. In the present paper, we focus our

attention on the situation, where the Riemann solution to (1.4) and (1.3) is a composite wave of two

shock waves (and three constants states) (see Figure 1):

U0(x, t) =


U−, x < s1t,

Um, s1t < x < s2t,

U+, x > s2t.

(1.5)

Here, Um is the intermediate state and the shock speeds s1 and s2 are constants determined by the

Rankine-Hugoniot condition

s1(vm − v−) = u− − um, s1(um − u−) = p(vm)− p(v−),

s2(v+ − vm) = um − u+, s2(u+ − um) = p(v+)− p(vm)
(1.6)

▲

▲

▲

▲
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v
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Figure 1 The composite wave of two shock waves
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and satisfy entropy conditions

−
√
−p′(v−) > s1 > −

√
−p′(vm),

√
−p′(vm) > s2 >

√
−p′(v+). (1.7)

To describe the strengths of the shock waves for later use, we set

δ = |U+ − U−|, δ1 = |Um − U−|, δ2 = |U+ − Um|, δ̄ = min{δ1, δ2}. (1.8)

When we choose δ small in our situation for the fixed U−, we note that it holds

δ 6 δ1 + δ2 6 Cδ, (1.9)

where C is a positive constant depending only on U−. Then, if it holds

δ1 + δ2 6 Cδ̄, as δ1 + δ2 → 0, (1.10)

for some positive constant C, we call the strengths of the shock waves “small with same order”. In what

follows, we always assume (1.10).

Next, we recall the definitions of viscous shock waves of (1.1), which correspond to the above shock

waves. We see that the 1-viscous shock wave which corresponds to the 1-shock wave is a traveling wave

solution to (1.1) with the formula Ū ϵ
1(x− s1t) = (V ϵ

1 , U
ϵ
1)

t(x− s1t), which is determined by

−s1(V ϵ
1 )

′ − (U ϵ
1)

′
= 0,

−s1(U ϵ
1)

′
+ p(V ϵ

1 )
′ = ϵ

[
(U ϵ

1)
′

V ϵ
1

]′
,

(V ϵ
1 , U

ϵ
1)

t(−∞) = U−,

(V ϵ
1 , U

ϵ
1)

t(+∞) = Um,

(1.11)

where ′ = d
dξ , ξ = x− s1t.

Similarly, the 2-viscous shock wave Ū ϵ
2(x− s2t) = (V ϵ

2 , U
ϵ
2)

t(x− s2t) is defined by

−s2(V ϵ
2 )

′ − (U ϵ
2)

′ = 0,

−s2(U ϵ
2)

′ + p(V ϵ
2 )

′ = ϵ

[
(U ϵ

2)
′

V ϵ
2

]′
,

(V ϵ
2 , U

ϵ
2)

t(−∞) = Um,

(V ϵ
2 , U

ϵ
2)

t(+∞) = U+,

(1.12)

where ′ = d
dη , η = x− s2t.

We denote a composite wave consisting of the two viscous shock waves (V ϵ
i , U

ϵ
i )

t, i = 1, 2 by

Ū ϵ =

[
v̄ϵ

ūϵ

]
=

[
V ϵ
1 (x− s1t) + V ϵ

2 (x− s2t)− vm

U ϵ
1(x− s1t) + U ϵ

2(x− s2t)− um

]
. (1.13)

Since the present paper is concerned with the non-smooth initial perturbation, the integral
∫∞
−∞(U(x, 0)

− Ū1(x, 0))dx is in general not zero. Fortunately, for weak waves, 0 < δi ≪ 1 (i = 1, 2), the vectors

r1 = Um − U−, r2 = U+ − Um form a basis of R2. Thus, the initial mass can be decomposed into∫ ∞

−∞
(U(x, 0)− Ū1(x, 0))dx =

2∑
i=1

αiri (1.14)

with the uniquely determined constants αi (i = 1, 2). Now the desired ansatz Ū ϵ
αϵ

1,α
ϵ
2
is defined as

Ū ϵ
αϵ

1,α
ϵ
2
=

[
v̄ϵαϵ

1,α
ϵ
2

ūϵαϵ
1,α

ϵ
2

]
=

[
V ϵ
1 (x− s1t+ α1ϵ) + V ϵ

2 (x− s2t+ α2ϵ)− vm

U ϵ
1(x− s1t+ α1ϵ) + U ϵ

2(x− s2t+ α2ϵ)− um

]
. (1.15)
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Then it follows from (1.3), (1.11), (1.12), (1.14) and Ū ϵ(x, t) = Ū1(xϵ ,
t
ϵ ) that∫ ∞

−∞
(U(x, 0)− Ū ϵ

αϵ
1,α

ϵ
2
(x, 0))dx =

∫ ∞

−∞
((U(x, 0)− Ū ϵ(x, 0))dx+

∫ ∞

−∞
(Ū ϵ(x, 0)− Ū ϵ

αϵ
1,α

ϵ
2
(x, 0))dx

= ϵ

2∑
i=1

αiri − ϵ

2∑
i=1

αiri = 0. (1.16)

Thus, Ū ϵ
αϵ

1,α
ϵ
2
is the desired ansatz.

Now, we are in a position to stating our main theorem.

Theorem 1.1. Let the constant states U± (with v± > 0) be connected by the composite wave consisting

of two shock waves, defined by (1.5) above, and δ = |U+ − U−| be sufficiently small. Then the Navier-

Stokes equations (1.1) with Riemann initial data (1.3) have a unique, global, piecewise smooth solution

U ϵ(x, t) = (vϵ, uϵ)t(x, t) such that:

(i) uϵ(x, t) is continuous for t > 0; uϵx, v
ϵ, vϵx and vϵt are uniformly Hölder continuous in the sets

{x < 0, t > τ} and {x > 0, t > τ} for any τ > 0; and uϵt, u
ϵ
xx, and v

ϵ
xt are Hölder continuous on compact

set in {(x, t), x ̸= 0, t > 0}. Moreover, the jumps in vϵ(x, t) and uϵx(x, t) at x = 0 satisfy

|[vϵ(0, t)]| 6 c exp{−ct/ϵ}, |[uϵx(0, t)]| 6 c exp{−ct/ϵ}, (1.17)

where c is a positive constant independent of t and ϵ.

(ii) The solutions U ϵ = (vϵ, uϵ)t converge uniformly to the composite wave U0 consisting of two shock

waves defined in (1.5) as the viscosity ϵ→ 0 on sets of the form {(x, t) : |x− s1t| > h and |x− s2t| > h},
for any positive number h, i.e.,

lim
ϵ→0

sup
|x−sit|>h,i=1,2

|U ϵ(x, t)− U0(x, t)| = 0. (1.18)

(iii) For fixed viscosity ϵ > 0, the solution U ϵ(x, t) approaches the composite wave Ū ϵ
αϵ

1,α
ϵ
2
consisting of

two viscous shock wave defined in (1.15) uniformly as time t goes to infinity, i.e.,

lim
t→∞

sup
x∈R1

|U ϵ(x, t)− Ū ϵ
αϵ

1,α
ϵ
2
(x, t)| = 0. (1.19)

The convergence rate in Lp-distance is given by

sup
t>0

∥U ϵ(·, t)− U0(·, t)∥Lp 6 Cϵ
1
p , for any 2 6 p <∞, (1.20)

where the positive constant C is independent of ϵ and t.

Remark 1.2. It is interesting to make a comparison between Theorem 1.1 and those of Yu [44], where

Yu gives a sharp characterization of the zero dissipation limit process with shock and initial layer for the

hyperbolic conservation laws with artificial viscosity. The main theorem of [44] is valid on the time interval

δ−2−α0ϵ 6 t 6 O(1)δ3 (here α0 is a given positive constant, ϵ and δ denote the viscosity coefficient and

the strength of the wave, respectively, see the main theorem on [44, p. 278] for details). The convergence

rate in (1.19) and (1.20) is not as good as in [44], but they are valid for all the time t > 0.

Remark 1.3. Similar method can be applied to study the compressible non-isentropic Navier-Stokes

equations. This will be reported in a forthcoming paper [47].

Now, we sketch the main idea of the proof and explain on some of the main difficulties and techniques

involved in the process. Roughly speaking, we follow the framework of Hoff and Liu [9] on the case of a

single shock wave, and the proof involves the following four steps.

In first step, using the hyperbolic scaling property of (1.1) and (1.3) and the Riemann problems (1.4)

and (1.3), we perform the scaling argument to reduce the proof of Theorem 1.1 to the nonlinear stability

problem in large time. Therefore, we encounter the problem to prove large time noninear asymptotic

stability of a composite wave of two viscous shock waves for (1.1) under the Riemann data (1.3). It is
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worth mentioning here that for Riemann initial data (1.3), the L2-norm of the spatial antiderivative of the

initial perturbation, i.e.,
∫ x

−∞(U(y, 0)− Ūα1,α2(y, 0))dy, is of the order δ
−1/2, where δ = |U+−U−|. Thus,

if we take δ small, the H2-norm of
∫ x

−∞(U(y, 0)−Ūα1,α2(y, 0))dy becomes arbitrarily large. Therefore, the

classic energy methods in [17,20,26–29,39,40,45], depending essentially on the smallness of the H2-norm

of the spatial antiderivative of the initial perturbation, do not work here. Comparing with the single shock

wave case in [9], where the excess mass is zero, the main difficulties here lie in the non-zero excess mass

and the interactions of two shock waves which are listed as follows. First, due to non-zero excess mass,

we need introduce phase shifts to carry the excessive mass, which makes the problem become much more

difficult (see the proofs of (2.12), Lemmas 3.1 and 3.2). We remark here that the shock speeds s1 < 0

and s2 > 0 play an essential role in the proof of Lemmas 3.1 and 3.2. Second, due to the interactions

of two shock waves, we need to control the error estimates arising from the difference between the two

intermediates described in Figures 1 and 2. One of key observations in this paper is that the difference is

on the order of δ3 (see (2.12)). With this key estimates in hand, we can control the error estimates arising

from the difference to close our energy estimates. Third, since the composite wave is considered here,

we can only get that the difference between λ2(Um) and λ2(U+) is on the order of δ, and do not know

whether or not it is on the order of δ3 as in [9]. But, as we know, the fact that the difference between

λ2(Um) and λ2(U+) is on the order of δ3 plays an important role in the proof of the main theorem in [9].

We overcome this difficulty by estimating the terms much more carefully and technically (see (2.32),

(2.34), Lemmas 2.6 and 3.1). Fourth, since two viscous shock waves and the effects of the initial layers

are considered here, wave interactions do occur. By making full use of the underlying wave structure,

we can obtain our desired estimates of wave interactions to close our energy estimates (see the proof

of Lemma 5.1). Fifth, we need to tackle the difficulty arising from the fact that the composite of two

viscous shock waves defined in (1.15) is not the exact solution to the Navier-Stokes equations (1.1) with

Riemann initial data (1.3). We overcome this difficulty by combining wave interactions estimates and

the technique on energy estimates.

In the second step, we develop sharp approximate solution to Navier-Stokes equations with Riemann

data (1.3) in the initial time regime. It is well known that viscous shock waves are leading asymptotic

ansatz for shock wave in large time, but do not generate good approximation in short initial time.

Therefore, both [9] and us encounter difficulty from initial layer. To overcome this difficulty, we construct

approximate solutions through nonlinear Burgers’ equation. The key idea is that instead of viscous

shock wave, we decompose the Riemann data in phase space and reconnect them through two diffusion

waves which are the Navier-Stokes’ correspondences through nonlinear Burgers’ equation. These give a

much better approximation to the Navier-Stokes solution in its leading order and matches well the initial

Riemann data. Therefore, detailed local information on the solution is obtained, and the solution is

extended to the intermediate time regime of order O(δ−2−ϑ), where δ denotes the strength of the initial

jumps, and ϑ is a small positive constant.

In the third step, we establish the key property of the solution to Navier-Stokes in the critical intermedi-

ate time regime. By making full use of the nonlinearity of Burgers’ equation and delicate energy methods,

we can show the difference between the solution to the Navier-Stokes equations and the approximate so-

lution remains small, at least for times up to intermediate time of order O(δ−2−ϑ). It is now we are able

to deal with the problem caused by the fact that the L2-norm of the spatial antiderivative of the initial

perturbation is as large as δ−1/2. In fact, motivated by [9], one of key observations is that the square of

the L2-norm of
∫ x

−∞(U(y, t)− Ūα1,α2
(y, t))dy is of the order δa(t+1)b (where a and b are nonnegative and

a− 2b > 0, see (2.63)), which may be arbitrarily large if the strength of the initial jumps δ is sufficiently

small and t = O(δ−2−ϑ). The estimate (2.64) will enable us to obtain that the square of the L2-norms of

higher-order derivatives are of the order δa(t+1)b (where a and b are nonnegative and a−2b > 1), which

may be arbitrarily small if the strength of the initial jumps δ is sufficiently small and t = O(δ−2−ϑ).

This, in turn, will lead to the desired smallness of the L∞-norm of
∫ x

−∞(U(y, t) − Ūα1,α2(y, t))dy and

L2-norms of higher-order derivatives which is exactly the a priori assumption of Lemma 2.6. The energy

estimates thus can be closed. We remark that the smallness assumption on the strength of the initial

jumps is essential here.
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In the last step, we show that for very large time, the solution to the Navier-Stokes equations coalesces

with the composite viscous traveling wave of the Navier-Stokes equations. This argument is proved by

means of energy estimates, using time O(δ−2−ϑ) as initial time. The detailed estimate of solution in

intermediate time regime helps to soften the roughness of the initial data due to dissipation of Navier-

Stokes. The resumed smallness in certain order norms gives the possibility to prove this stability result

using energy method. Comparing with [17], the main novelty in this step of this paper is to overcome

the difficulties arising from non-smooth initial perturbations and the careful energy estimate on the

boundary integral terms. These can be easily seen from the new and very different energy estimates

in, for instance, the proofs of (5.2) and (5.3), and the estimates on the boundary integral terms arising

from the non-smooth initial perturbations (see (5.20)). For other related works, we refer the readers

to [32–36,38].

The rest of this paper is organized as follows. In the next section, we construct a certain approximate

solution and collect together those properties needed for energy estimates in Sections 4–5. In Section 3,

we collect some fundamental facts concerning the viscous shock waves. The wave interactions are also

estimated in this section. In Section 4, we obtain the intermediate-time estimate for U − Ūα1,α2 . In

Section 5, we make careful energy estimates to complete the proof of our main results, Theorem 1.1.

Throughout this paper, we use the following notations:

∥ · ∥ = ∥ · ∥L2(R), ∥ · ∥− = ∥ · ∥L2(R−) + ∥ · ∥L2(R+), −
∫
dy =

∫ 0

−∞
dy +

∫ +∞

0

dy.

2 Some properties for the approximate solution

In this section, we adjust the technique developed by Hoff and Liu [9] to construct the approximate

solution based on the self-similar solutions of the Burgers equation and collect together some estimates

needed in Sections 3–5. We shall take ϵ = 1 throughout this section, so that (1.1) takes the form
vt − ux = 0,

ut + p(v)x =

(
ux
v

)
x

.
(2.1)

Rewrite (2.1) as

∂U

∂t
+A(U)

∂U

∂x
=

∂

∂x

(
B(U)

∂U

∂x

)
, (2.2)

where

U =

(
v

u

)
, A(U) =

(
0, −1

p′(v), 0

)
, B(U) =

(
0, 0

0, 1
v

)
.

The characteristic speeds λi and right eigenvectors ri, i = 1, 2, for A are

λi = ∓
√
σ, ri =

[
∓1/σv

−σ/σv

]
, ∇λi · ri ≡ 1, i = 1, 2, (2.3)

where σ =
√
−p′(v).

Let R1 and R2 be integral curves of r1 and r2, passing through U− and U+, respectively, and intersecting

at Ũm (see Figure 2).
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▲

▲

▲

▲

u

v

U

U
+

_

Um
∼

R1

R2

Figure 2 The approximate diffusion waves

It is noted that the Rankine-Hugoniot condition (1.4) implies

u− = u+ +
√
(ṽm − v−)(p(v−)− p(ṽm)) +

√
(ṽm − v+)(p(v+)− p(ṽm)) (2.4)

and the integral curves Ri, i = 1, 2, are given by

R1 : u = u− −
∫ v−

v

√
−p′(τ)dτ, R2 : u = u+ −

∫ v

v+

√
−p′(τ)dτ. (2.5)

By virtue of (2.4)–(2.5) and Hölder inequality, we have

2(ũm − u+) =
√
(ṽm − v−)(p(v−)− p(ṽm))

+
√
(ṽm − v+)(p(v+)− p(ṽm))−

∫ v−

v+

√
−p′(τ)dτ

=
√
(ṽm − v−)(p(v−)− p(ṽm))−

∫ v−

ṽm

√
−p′(τ)dτ

+
√
(ṽm − v+)(p(v+)− p(ṽm))−

∫ ṽm

v+

√
−p′(τ)dτ

> 0. (2.6)

Therefore, we see that ṽm < v+ and λ2(Ũm) > λ2(U+), since σv < 0. So, we define

δ̃1 =
1

2
[λ1(U−)− λ1(Ũm)] > 0 (2.7)

and

δ̃2 =
1

2
[λ2(Ũm)− λ2(U+)] > 0. (2.8)

It follows from (1.8) , triangle inequality and |Ũm − U−|+ |U+ − Ũm| 6 C|U+ − U−| that

δ 6 δ̃1 + δ̃2 6 Cδ. (2.9)

By virtue of [37, Theorem 17.16], we have∣∣∣∣um −
∫ vm √

−p′(τ)dτ − u− +

∫ v− √
−p′(τ)dτ

∣∣∣∣
=

∣∣∣∣um −
∫ vm √

−p′(τ)dτ − ũm +

∫ ṽm √
−p′(τ)dτ

∣∣∣∣ 6 C|Um − U−|3 (2.10)
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and ∣∣∣∣um +

∫ vm √
−p′(τ)dτ − u+ −

∫ v+ √
−p′(τ)dτ

∣∣∣∣
=

∣∣∣∣um +

∫ vm √
−p′(τ)dτ − ũm −

∫ ṽm √
−p′(τ)dτ

∣∣∣∣ 6 C|U+ − Um|3. (2.11)

From (1.9), (2.10) and (2.11), we can get the desired estimate concerning the difference |Um − Ũm|, i.e.,

|Um − Ũm| 6 Cδ3. (2.12)

Using (1.9), (1.10), (2.9), (2.12) and triangle inequality, we have

δ/C 6 δ̃1, δ̃2 6 Cδ. (2.13)

Now, we are ready to describe Riemann data solutions and traveling wave solutions to the Burgers

equation, and use this information to construct the approximations ŪR and ŪTW required later on. To

begin with, we let λR be the solution to the Burgers equation

λt + λλx = βλxx, t > 0, x ∈ R, (2.14)

with Riemann initial data

λR(x, 0) =

{
0, x < 0,

−2δ̂, x > 0,
(2.15)

where β and δ̂ are positive constants.

Using the well-known Hopf-Cole transform, we can solve initial value problems (2.14) and (2.15) di-

rectly. As in [9], we have the following lemma.

Lemma 2.1. The solution to initial value problems (2.14) and (2.15) is given by

λR = −2δ̂
eδ̂(x+δ̂t)/βf(−x+2δ̂t√

4βt
)

eδ̂(x+δ̂t)/βf(−x+2δ̂t√
4βt

) + f( x√
4βt

)
, (2.16)

where

f(a) = π− 1
2

∫ +∞

a

e−τ2

dτ. (2.17)

Moreover, λR satisfies

− 2δ̂ 6 λR 6 0, (2.18)

∣∣∣∣∂λR∂x (x, t)

∣∣∣∣ 6 C[δ̂t−
1
2 e−

x2

4βt + δ̂2e−δ̂|x+δ̂t|/β ],∣∣∣∣∂2λR∂x2
(x, t)

∣∣∣∣ 6 C[(δ̂|x|t− 3
2 + δ̂2t−

1
2 )e−

x2

4βt + δ̂3e−δ̂|x+δ̂t|/β ],∣∣∣∣∂3λR∂x3
(x, t)

∣∣∣∣ 6 C{[δ̂(x2t−3 + |x|t− 5
2 ) + δ̂2(|x|t− 3

2 + t−1) + δ̂3t−
1
2 ]e−

x2

4βt + δ̂4e−δ̂|x+δ̂t|/β ]}.

(2.19)

Proof. See [9, Theorem 2.1].

So, we let λiR, i = 1, 2, be the solution to the Burgers equation (2.14) with initial data

λiR(x, 0) =

{
0, x < 0,

−2δ̃i, x > 0,
(2.20)
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and β = 1/(2ṽm), and set{
µ1
R(x, t) = λ1R(x− λ1(U−)(t+ 1), t+ 1) + λ1(U−),

µ2
R(x, t) = λ2R(x− λ2(Ũm)(t+ 1), t+ 1) + λ2(Ũm).

(2.21)

It is easy to see that µi are also solutions to (2.14) with “initial data”

µ1
R(x,−1) =

{
λ1(U−), x < 0,

λ1(Ũm), x > 0,

and

µ2
R(x,−1) =

{
λ2(Ũm), x < 0,

λ2(U+), x > 0.

Next, we generate approximate solutions Ū i
R by taking Ū i

R ∈ Ri and λi(Ū
i
R(x, t)) = µi

R(x, t), and we

finally set

ŪR = Ū1
R + Ū2

R − Ũm. (2.22)

Then, ŪR satisfies the pde

(ŪR)t + F (ŪR)x = B(Ũm)(ŪR)xx −A1 −A2 +Dx, (2.23)

where

Ai =
∑
j ̸=i

1

2ṽm
(µi

R)xxrj(Ū
i
R) + (µi

R)xB(Ũm)(ri(Ū
i
R))x, (2.24)

and

F (U) =

[
−u
p(v)

]
, D =

[
0

p(v̄R)− p(v̄1R)− p(v̄2R) + p(ṽm)

]
. (2.25)

At t = −1, ŪR agrees with U(·, 0),

ŪR(x,−1) =

{
U−, x < 0,

U+, x > 0.
(2.26)

An approximate solution ŪTW is constructed in exactly the same way, except that, in place of the

solutions λiR to the Burgers equation with Riemann data, we substitute the corresponding traveling wave

with the traveling wave data λiTW(x, 0) = (−2δ̃i)/(1 + e−δ̃ix/β) with β = 1/(2ṽm). Thus,

λiTW(x, t) =
−2δ̃i

1 + e−δ̃i(x−s̃it)/β
, (2.27)

where

s̃1 =
λ1(U−) + λ1(Ũm)

2
, s̃2 =

λ2(Ũm) + λ2(Ũ+)

2
, (2.28)

and 
µ1
TW(x, t) = λ1TW(x, t+ 1) + λ1(U−),

µ2
TW(x, t) = λ2TW(x, t+ 1) + λ2(Ũm),

ŪTW = Ū1
TW + Ū2

TW − Ũm,

λi(Ū
i
TW(x, t)) = µi

TW(x, t), Ū i
TW ∈ Ri.

(2.29)

In the following lemma, we collect together those properties for ŪR needed in Sections 3–4.
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Lemma 2.2. Let ŪR be as constructed above. Then∥∥∥∥∂ŪR

∂x
(·, t)

∥∥∥∥ 6 C[δ(t+ 1)−1/4 + δ3/2], (2.30)∫ t

0

∫
R

(
∂ŪR

∂x

)2

dxdt 6 C[δ2(t+ 1)1/2 + δ3t], (2.31)∥∥∥∥∂ŪR

∂t
(·, t)

∥∥∥∥ 6 C[δ(t+ 1)−3/4 + δ2], (2.32)∥∥∥∥∂ŪR

∂x
(·, t)

∥∥∥∥
L∞

,

∥∥∥∥∂ŪR

∂t
(·, t)

∥∥∥∥
L∞

6 C[δ(t+ 1)−1/2 + δ2], (2.33)∥∥∥∥∂ŪR

∂x
(·, t)

∥∥∥∥
L1

6 Cδ, (2.34)

∂v̄R
∂t

= f1 + f2, (2.35)

where −Cδ 6 f1 < 0, and ∥f2(·, t)∥L∞ 6 C[δ(t+ 1)−1 + δ2(t+ 1)−1/2 + δ3],∫ +∞

0

∣∣∣∣ ∫ ∞

x

(Ū1
R − Ũm)(y, t)dy

∣∣∣∣2dx 6 Cδ2(t+ 1)3/2e−(t+1)/C , (2.36)∫ 0

−∞

∣∣∣∣ ∫ x

−∞
(Ū2

R − Ũm)(y, t)dy

∣∣∣∣2dx 6 Cδ2(t+ 1)3/2e−(t+1)/C , (2.37)

∥ŪR(·, 0)− ŪR(·,−1)∥ 6 Cδ, (2.38)∫ +∞

0

∫
R

|D|dxdt 6 Cδ2,

∫ +∞

0

∫
R

|D|2dxdt 6 Cδ4. (2.39)

Proof. Since the proofs of (2.30)–(2.32), (2.34) and (2.36)–(2.39) can be found in [9], we focus our

attention on the proofs of (2.33) and (2.35). To begin with, we have from construction that∣∣∣∣∂ŪR

∂x
(x, t)

∣∣∣∣ 6 ∣∣∣∣∂µ1
R

∂x
(x, t)r1(Ū

1
R)

∣∣∣∣+ ∣∣∣∣∂µ2
R

∂x
(x, t)r2(Ū

2
R)

∣∣∣∣
6 C

∣∣∣∣∂λ1R∂x (x− λ1(U−)(t+ 1), t+ 1)

∣∣∣∣+ ∣∣∣∣∂λ2R∂x (x− λ2(Ũm)(t+ 1), t+ 1)

∣∣∣∣
6 C[δ(t+ 1)−1/2 + δ2], (2.40)

where we have used (2.13) and (2.19).

Similarly, we can obtain ∣∣∣∣∂ŪR

∂t
(x, t)

∣∣∣∣ 6 C[δ(t+ 1)−1/2 + δ2]. (2.41)

Then, (2.33) follows from (2.40) and (2.41) immediately.

Next, we prove (2.35). By construction,
∂Ūi

R

∂t = (µi
R)tri(Ū

i
R), i = 1, 2, so that by (2.3)

∂v̄R
∂t

= a1
∂µ1

R

∂t
− a2

∂µ2
R

∂t
, (2.42)

where ai = O(1), i = 1, 2, are positive.

By virtue of (2.22), we have

∂v̄1R
∂t

=

[
∂λ1R
∂t

(x− λ1(U−)(t+ 1), t+ 1)− λ1(U−)
∂λ1R
∂x

(x− λ1(U−)(t+ 1), t+ 1)

]
, (2.43)

and
∂v̄2R
∂t

=

[
∂λ2R
∂t

(x− λ1(Ũm)(t+ 1), t+ 1)− λ2(Ũm)
∂λ2R
∂x

(x− λ2(Ũm)(t+ 1), t+ 1)

]
. (2.44)
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Combining the above relations (2.42)–(2.44), we get

∂v̄R
∂t

=

[
− a1λ1(U−)

∂λ1R
∂x

(x− λ1(U−)(t+ 1), t+ 1) + a2λ2(Ũm)
∂λ2R
∂x

(x− λ2(Ũm)(t+ 1), t+ 1)

]
+

[
a1
∂λ1R
∂t

(x− λ1(U−)(t+ 1), t+ 1)− a2
∂λ2R
∂t

(x− λ2(Ũm)(t+ 1), t+ 1)

]
. (2.45)

The first term here, which we take to be f1 is negative, since the solution operator to (2.14) preserves

monotonicity. It is clear that −Cδ 6 f1 6 0. The second term above, which we define to be f2, then

satisfies

∥f2(·, t)∥L∞ 6 C[δ(t+ 1)−1 + δ2(t+ 1)−1/2 + δ3], (2.46)

where we have used (2.13), (2.14) and (2.18).

Therefore, the proof of (2.35) is completed.

The following facts concerning ŪTW will be needed in Sections 3–4.

Lemma 2.3. Let ŪTW be as constructed above. Then∥∥∥∥ ∂∂xŪ i
TW(·, t)

∥∥∥∥ 6 Cδ3/2, (2.47)

and

∥ŪTW(·, 0)− ŪTW(·,−1)∥ 6 Cδ3/2. (2.48)

Proof. See [9, Theorem 2.5].

The following lemma is concerned with the estimates of the difference between ŪR and ŪTW.

Lemma 2.4. Let ŪR and ŪTW be as constructed above. Then

∥ŪR(·, t)− ŪTW(·, t)∥ 6 C[δ1/2 + δ(t+ 1)1/4]e−δ2(t+1)/C , (2.49)∫ 0

−∞

∣∣∣∣∫ x

−∞
(Ū1

R − Ū1
TW)(y, t)dy

∣∣∣∣2 dx 6 C[δ−1/2 + δ(t+ 1)1/4]e−δ2(t+1)/C , (2.50)∫ ∞

0

∣∣∣∣∫ ∞

x

(Ū2
R − Ū2

TW)(y, t)dy

∣∣∣∣2 dx 6 C[δ−1/2 + δ(t+ 1)1/4]e−δ2(t+1)/C . (2.51)

Proof. Noting that (2.13), we can prove Lemma 2.3 by applying the similar arguments as in [9,

Theorem 2.6].

The approximate solution ŪR constructed above fails to satisfy a conservation equation (see (2.23)),

so that the variable ∫ x

−∞
[U(y, t)− ŪR(y, t)]dy

is not necessarily in L2(R) for t > 0. We therefore introduce the function ¯̄U defined by

¯̄Ut + F ′(Ũm) ¯̄Ux =
1

2ṽm
¯̄Uxx +A1 +A2, x ∈ R, t > 0, (2.52)

with the initial data
¯̄U(x, 0) = ŪR(x,−1)− ŪR(x, 0). (2.53)

Thus, ŪR + ¯̄U agrees with U at t = 0 (see (2.26)), and U − ŪR − ¯̄U , satisfying a conservation equation,

will have an L2 x-antiderivative for all time.

The following lemma gives some bounds for ¯̄U required for the analysis in Sections 3–4.



Zhang Y H et al. Sci China Math 13

Lemma 2.5. Let ¯̄U be constructed above , and assume that δ = |U+ −U−| is sufficiently small. Then

∥ ¯̄U(·, t)∥ 6 C
∑

a−2b>1

δa(t+ 1)b, (2.54)

∫ t

0

∫
R

| ¯̄U |2dxdt 6 C
∑

a−2b>0

δa(t+ 1)b, (2.55)

∫ t

0

∫
R

| ¯̄Ux|2dxdt 6 C
∑

a−2b>2

δa(t+ 1)b, (2.56)

∥ ¯̄Ux(·, t)∥ 6 C
∑

a−2b>1

δa(t+ 1)b, t > 1, (2.57)

∫ t

1

∫
R

| ¯̄Uxx|2dxdt 6 C
∑

a−2b>2

δa(t+ 1)b, t > 1, (2.58)

∫ t

1

∫
R

| ¯̄U |4dxdt 6 C
∑

a−2b>2

δa(t+ 1)b, t > 1, (2.59)

∥ ¯̄Ut(·, t)∥ 6 Cδ, t > 1, (2.60)∫ 0

−∞

∣∣∣∣ ∫ x

−∞

¯̄U(y, t)dy

∣∣∣∣2dx 6 C
∑

a−2b>0

δa(t+ 1)b, (2.61)

∫ ∞

0

∣∣∣∣ ∫ ∞

x

¯̄U(y, t)dy

∣∣∣∣2dx 6 C
∑

a−2b>0

δa(t+ 1)b. (2.62)

Here,
∑

a−2b>c δ
a(t + 1)b denotes a finite sum of the terms of the form δa(t + 1)b where a and b are

nonnegative and a− 2b > c.

Proof. See [9, Theorem 3.1].

We end this section with the following lemma concerning the existence of the solution U up to the

intermediate time T = O(δ−2−ϑ):

Lemma 2.6. Under the assumptions of Theorem 1.1, the solution to (1.3)–(2.1) exists up to the

intermediate time T = O(δ−2−ϑ), where ϑ > 0 is a global constant, and satisfies

sup
06τ6t

∥W (τ)∥2 +
∫ t

0

∥Wx(τ)∥2dτ +
∫ t

0

∫
R

|f1|w2dxdτ 6 C
∑

a−2b>0

δa(t+ 1)b, (2.63)

sup
06τ6t

{∥∆U(τ)∥−2
+ ∥vx(τ)∥−2}+

∫ t

0

∥∆Ux(τ)∥−2
dτ 6 C

∑
a−2b>1

δa(t+ 1)b, (2.64)

for t 6 T . Here ∆U = U − ŪR − ¯̄U and W =
∫ x

−∞ ∆U(y, t)dy = [ zw ].

Proof. Setting ∆U = U − ŪR − ¯̄U and W =
∫ x

−∞ ∆U(y, t)dy = [ zw ], we have

∆Ut + [F (U)− F (ŪR)− F ′(Ũm) ¯̄U ]x

= B(Ũm)∆Uxx + [(B(U)−B(Ũm))Ux]x + (B(Ũm)− β) ¯̄Uxx −Dx, (2.65)

and

Wt + [F (U)− F (ŪR)− F ′(Ũm) ¯̄U ] = B(Ũm)Wxx + (B(U)−B(Ũm))Ux + (B(Ũm)− β) ¯̄Ux −D. (2.66)

Of course, the initial data is identically zero for both ∆U and W by (2.26) and (2.53). Linearizing the

second equation in (2.66), we can rewrite (2.66) in the formzt − wx = −β ¯̄vx,

wt + p′(v̄R)zx =
wxx

ṽm
+

(
1

v
− 1

ṽm

)
ux +

(
1

ṽm
− β

)
¯̄ux − d+O[(v − v̄R)

2 + |¯̄v(v̄R − ṽm)|].
(2.67)
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Following the arguments in [9], in order to complete the proof of Lemma 2.6, we only need to

prove (2.63) and (2.64) hold up to T as a priori bounds, that is, provided that ∥w∥L∞ , ∥v − v−∥L∞ ,

δ3t and δ log(t+ 1) are sufficiently small. First, we derive energy estimates for the solution W to (2.67).

By multiplying the two equations (2.67) by z and −w/p′(v̄R), respectively and adding and integrating,

we obtain

sup
06τ6t

∫
R

|W (x, τ)|2 dx+

∫ t

0

∫
R

(|f1|w2 + w2
x)dxdτ

6 C

∫ t

0

∫
R

[|f2|w2 + |zx ¯̄v|+ |wwx(v̄R)x|+ |wux(v − ṽm)|

+(|wx|+ |w(v̄R)x|)|¯̄u|+ |w||d|+ |w||v − v̄R|2 + |w¯̄v(v̄R − ṽm)|]dxdτ

=
8∑

j=1

Ij , (2.68)

where we have used the fact that ( 1
p′(v̄R) )t = | p′′

(p′)2 f1|+O(f2).

Now, we apply the estimates (2.30)–(2.39) for ŪR and (2.54)–(2.62) for ¯̄U to bound the terms Ij one

by one. First, we have from (2.35) that

I1 6 C[δ log(t+ 1) + δ2(t+ 1)
1
2 + δ3t] sup

06τ6t

∫
R

w2(x, τ)dx. (2.69)

Using the Cauchy-Schwarz inequality and (2.54), we get

I2 6 C

[
α

∫ t

0

∫
R

z2xdxτ + Cα

∑
a−2b>0

δa(t+ 1)b)

]
, (2.70)

where α is to be chosen later.

Applying the Cauchy-Schwarz inequality and (2.33), we obtain

I3 6 Cα

∫ t

0

∫
R

w2
xdxdτ + Cα

∫ t

0

∫
R

(v̄R)
2
xw

2dxdτ

6 C

[
α

∫ t

0

∫
R

w2
xdxdτ + Cα(δ

2 log(t+ 1) + δ4t) sup
06τ6t

∫
R

w2(x, τ)dτ

]
. (2.71)

Due to the triangle inequality, we have

I4 6 C

∫ t

0

∫
R

|w(v − ṽm)|
(
|∆ux|+

∣∣∣∣∂ūR∂x
∣∣∣∣+ |¯̄ux|

)
dxdτ = I14 + I24 + I34 . (2.72)

Using the triangle inequality, Cauchy-Schwarz inequality, and (2.55), we get

I14 6 C

∫ t

0

∫
R

|w||∆ux|(|zx|+ |(v̄R − ṽm)|+ |¯̄v|)dxdτ

6 C∥w∥L∞

∫ t

0

∫
R

(z2x +∆u2x)dxdτ + Cα sup
06τ6t

∫
R

w2(x, τ)dx

+ Cαδ
2t

∫ t

0

∫
R

∆u2xdxdτ + C

∫ t

0

∫
R

∆u2xdxdτ + C

∫ t

0

∫
R

¯̄v2dxdτ

6 C

[
α sup

06τ6t

∫
R

w2(x, τ)dx+ ∥w∥L∞

∫ t

0

∫
R

z2xdxdτ

+ (1 + δ2t)

∫ t

0

∫
R

∆u2xdxdτ +
∑

a−2b>0

δa(t+ 1)b
]
. (2.73)
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Similarly, we have

I24 6 C

[
δ3t sup

06τ6t

∫
R

w2(x, τ)dx+ α

∫ t

0

∫
R

z2xdxdτ +
∑

a−2b>0

δa(t+ 1)b
]
, (2.74)

and

I34 6 C

[
δ3t sup

06τ6t

∫
R

w2(x, τ)dx+ ∥w∥L∞

∫ t

0

∫
R

z2xdxdτ +
∑

a−2b>0

δa(t+ 1)b
]
. (2.75)

Combining the relations (2.72)–(2.75), we obtain

I4 6 C

[
(α+ δ3t) sup

06τ6t

∫
R

w2(x, τ)dx+ (α+ ∥w∥L∞)

∫ t

0

∫
R

z2xdxdτ

+ (1 + δ2t)

∫ t

0

∫
R

∆u2xdxdτ +
∑

a−2b>0

δa(t+ 1)b
]
. (2.76)

By virtue of (2.33), (2.55) and Cauchy-Schwarz inequality, we get

I5 6 C

[
α

∫ t

0

∫
R

w2
xdxdτ +

∫ t

0

∫
R

¯̄u2dxdτ +

∫ t

0

∫
R

w2(v̄R)
2
xdxdτ

]
6 C

[
α

∫ t

0

∫
R

w2
xdxdτ + (δ2 log(t+ 1) + δ4t) sup

06τ6t

∫
R

w2(x, τ)dx+
∑

a−2b>0

δa(t+ 1)b
]
. (2.77)

Applying Cauchy-Schwarz inequality and (2.39)2, we have

I6 6 C

[
δ3
∫ t

0

∫
R

w2dxdτ + δ−3

∫ t

0

∫
R

d2dxdτ

]
6 C

[
δ3t sup

06τ6t

∫
R

w2(x, τ)dx+ δ

]
. (2.78)

By the triangle inequality, Cauchy-Schwarz inequality, and (2.55), we obtain

I7 6 C

∫ t

0

∫
R

|w|(|zx|+ |¯̄v|)2dxdτ 6 C∥w∥L∞

[ ∫ t

0

∫
R

z2xdxdτ +
∑

a−2b>0

δa(t+ 1)b
]
. (2.79)

Similarly, we have

I8 6 C

[
α sup

06τ6t

∫
R

w2(x, τ)dx+
∑

a−2b>0

δa(t+ 1)b
]
. (2.80)

Inserting the above estimates into (2.68), we get

sup
06τ6t

∫
R

|W (x, t)|2 dx+

∫ t

0

∫
R

(|f1|w2 + w2
x)dxdτ

6 C(α+ ∥w∥L∞)

∫ t

0

∫
R

z2xdxdτ + C(1 + δ2t)

∫ t

0

∫
R

∆u2xdxdτ + C
∑

a−2b>0

δa(t+ 1)b. (2.81)

Next, we estimate the term
∫ t

0

∫
R
z2xdxdτ . To do this, we differentiate the first equation in (2.67) with

respect to x, multiply by −w, and add to zx times the second equation in (2.67). Integrating the resultant

equation over R× (0, t) and applying the similar arguments just as before, we have∫ t

0

∫
R

z2xdxdτ 6 C

[ ∫
R

(z2x(x, t) + w2(x, t))dx+

∫ t

0

∫
R

(w2
x +∆u2x)dxdτ +

∑
a−2b>0

δa(t+ 1)b
]
. (2.82)

Adding a small multiple of (2.82) to (2.81), taking α small in (2.81), and using the priori assumption

∥w∥L∞ is small, we conclude that

sup
06τ6t

∫
R

|W (x, t)|2dx+

∫ t

0

∫
R

(|f1|w2 + w2
x)dxdτ
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6 C

[
sup

06τ6t

∫
R

z2x(x, τ)dx+
∑

a−2b>0

δa(t+ 1)b + (1 + δ2t)

∫ t

0

∫
R

∆u2xdxdτ

]
. (2.83)

With the essential estimate (2.83) in hand, we can use the same arguments as in [9] to conclude that (2.63)

and (2.64) hold up to T as a priori bounds, i.e., provided that ∥w∥L∞ , ∥v − v−∥L∞ , δ3t and δ log(t+ 1)

are sufficiently small.

Therefore, the proof of Lemma 2.6 is completed.

3 Some properties for the viscous shock waves and the estimates for wave

interactions

In this section, we first give some fundamental facts about the viscous shock waves. Then, we deal with

the wave interactions from the two different characteristic fields. We begin with the following lemma

concerning some properties of the viscous shock waves.

Lemma 3.1. Let the viscosity coefficient ϵ be equal to one in (1.11) and (1.12), and denote Ū1 and Ū2

by the viscous shock waves of (1.11) and (1.12). Then, the two viscous shock waves Ū1 and Ū2 defined

in (1.11) and (1.12), respectively satisfy the following estimates:

|(Ū1 − U−)(x, t)| 6 Cδ1e
−δ1|x−s1t|/C , x < s1t, t > 0, (3.1)

|(Ū1 − Um)(x, t)| 6 Cδ1e
−δ1|x−s1t|/C , x > s1t, t > 0, (3.2)

|(Ū2 − Um)(x, t)| 6 Cδ2e
−δ2|x−s2t|/C , x < s2t, t > 0, (3.3)

|(Ū2 − U+)(x, t)| 6 Cδ2e
−δ2|x−s2t|/C , x > s2t, t > 0, (3.4)

Ui,x(x, t) < 0, |Ui,x| 6 Cδ2i e
−δi|x−sit|/C , x ∈ R, t > 0, (3.5)

∥(Ūα1,α2 − ŪTW)(·, t)∥ 6 C[δ1/2 + δ2t1/2 + δ7/2t], (3.6)∫ 0

−∞

∣∣∣∣ ∫ x

−∞
(Ū1,α1 − Ū1

TW)(y, t)dy

∣∣∣∣2dx 6 C
∑

a−2b>0

δa(t+ 1)b, (3.7)

∫ ∞

0

∣∣∣∣ ∫ ∞

x

(Ū2,α2 − Ū2
TW)(y, t)dy

∣∣∣∣2dx 6 C
∑

a−2b>0

δa(t+ 1)b, (3.8)

∫ ∞

0

∣∣∣∣ ∫ ∞

x

(Ū1,α1
− Um)(y, t)dy

∣∣∣∣2dx 6 C[δ−1e−δt/C + δ2], (3.9)∫ 0

−∞

∣∣∣∣ ∫ x

−∞
(Ū2,α2 − Um)(y, t)dy

∣∣∣∣2dx 6 C[δ−1e−δt/C + δ2], (3.10)

where Ūi,αi
(x, t) = Ūi(x− sit+ αi) (i = 1, 2) and Ūα1,α2

= Ū1,α1
+ Ū2,α2

− Um.

Proof. Since the proofs of (3.1)–(3.5) are fundamental, we will focus on the proofs of (3.6)–(3.10). To

begin with, by noting that (1.9), (1.10) and (2.12), then we can follow the arguments in [9] step by step

to obtain

|Ū1(x)− Ū1
TW(x)| 6

{
Cδ2e−δ|x|/C , x 6 0,

C(δ3 + δ2e−δ|x|/C), x > 0,
(3.11)

and

|Ū2(x)− Ū2
TW(x)| 6

{
C(δ3 + δ2e−δ|x|/C), x 6 0,

Cδ2e−δ|x|/C , x > 0
(3.12)

(see the proof of [9, (5.17)]). By virtual of (1.3), (1.9), (1.13), (1.14) and (3.1)–(3.4), we have the following

critical estimates on the phase shifts:

|αi| = O(δ−1), i = 1, 2. (3.13)
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To prove (3.6), one has

∥(Ūα1,α2 − ŪTW)(·, t)∥2 = ∥(Ūα1,α2 − ŪTW)(·, t)∥2L2(R−) + ∥(Ūα1,α2 − ŪTW)(·, t)∥2L2(R+)

= J1 + J2. (3.14)

Now, we treat the terms J1 and J2 separately. Using the Cauchy inequality, we have

J1 =

∫ 0

−∞
|Ū1,α1

(x, t) + Ū2,α2
(x, t)− Um − Ū1

TW(x− s̃1t)− Ū2
TW(x− s̃2t) + Ũm|2dx

6 3

[ ∫ 0

−∞
|Ū1,α1(x, t)− Ū1

TW(x− s̃1t)|
2
dx+

∫ 0

−∞
|Ū2,α2(x, t)− Um|2dx

+

∫ 0

−∞
|Ū2

TW(x− s̃2t)− Ũm|2dx
]

= J1
1 + J2

1 + J3
1 . (3.15)

By virtue of (3.5), (3.11) and (3.13), we get

J1
1 6 C

[ ∫ 0

−∞
|(Ū1 − Ū1

TW)(x+ α1 − s1t)|2dx+

∫ 0

−∞
|Ū1

TW(x+ α1 − s1t)− Ū1
TW(x− s̃1t)|2dx

]
6 C

[ ∫ |α1|−s1t

−∞
|(Ū1 − Ū1

TW)(x)|2dx+ (1 + |s1 − s̃1|2t2)
∫
R

∣∣∣∣∂Ū1
TW

∂x

∣∣∣∣2dx]
6 C[δ3 + δ4t+ δ7t2], (3.16)

where we have used the fact that

s1 =
λ1(U−) + λ1(Um)

2
+O(δ2) =

λ1(U−) + λ1(Ũm)

2
+O(δ2) = s̃1 +O(δ2).

Applying the bound (3.5) and (3.13), we obtain

J2
1 =

∫ α2−s2t

−∞
|Ū2(x)− Um|2dx 6 C

[ ∫ 0

−∞
|Ū2(x)− Um|2dx+

∫ |α2|

0

|Ū2(x)− Um|2dx
]
6 Cδ. (3.17)

From (2.27) and (2.29), we get

J3
1 6 Cδ̃22

∫ 0

−∞

1

(1 + e−δ̃2(x−s̃2(t+1))/β)2
dx 6 Cδ̃22

∫ −s̃2(t+1)

−∞

1

(1 + e−δ̃2(x−s̃2(t+1))/β)2
dx

6 Cδ̃22

∫ 0

−∞
eδ̃2x/Cdx 6 Cδ. (3.18)

Inserting the bounds (3.16)–(3.18) into (3.15), we obtain

J1 6 C[δ + δ4t+ δ7t2]. (3.19)

To control J2, we triangulate as follows

Ūα1,α2 − ŪTW = (Ū2,α2 − Ū2
TW) + (Ū1,α1 − Um) + (Ũm − Ū1

TW). (3.20)

Then, using the similar arguments just as before, we can obtain

J2 6 C[δ + δ4t+ δ7t2]. (3.21)

Therefore, (3.6) follows from (3.19) and (3.21) immediately.

Now, we turn to the proof of (3.7). By virtue of (2.27), (2.29) and (3.11), we have∫ 0

−∞

∣∣∣∣ ∫ x

−∞
(Ū1,α1 − Ū1

TW)(y, t)dy

∣∣∣∣2dx



18 Zhang Y H et al. Sci China Math

6 C

∫ α1−s1t

−∞

(∫ x

−∞
|(Ū1 − Ū1

TW)(y)|dy
)2

dx

+ C

∫ 0

−∞

(∫ x

−∞
|Ū1

TW(y + α1 − s1t)− Ū1
TW(y − s̃1t)|dy

)2

dx. (3.22)

The first integral on the right-side hand of (3.22) can be bounded as follows:

C

∫ α1−s1t

−∞

(∫ x

−∞
|(Ū1 − Ū1

TW)(y)|dy
)2

dx

6 C

∫ 0

−∞

(∫ x

−∞
|(Ū1 − Ū1

TW)(y)|dy
)2

dx+ C

∫ |α1|−s1t

0

(∫ 0

−∞
|(Ū1 − Ū1

TW)(y)|dy
)2

dx

+ C

∫ |α1|−s1t

0

(∫ x

0

|(Ū1 − Ū1
TW)(y)|dy

)2

dx

6 C[δ + δ2(t+ 1) + δ6(t+ 1)3].

By noting (2.27), (2.29) and (3.13), it is easy to see that the second integral can be bounded by

C(1 + |s1 − s̃1|2t2)
∫ O(1)(t+1)

−∞

(∫ x

−∞
|(Ū1

TW)′(z)|dz
)2

dx.

Using the fact that |(Ū1
TW)′(z)| 6 Cδ2e−δ|z|/C (see (2.27) and (2.29)) and that |s1 − s̃1| 6 Cδ2, we find

that the second term on the right-side hand of (3.21) can be bounded by C[δ2(t+1)+ δ6(t+1)3]. These

estimates prove (3.7). The proof of (3.8) is similar.

Finally, we prove the bounds (3.9) and (3.10). It is sufficient to prove (3.9), since the proof of (3.10)

is similar. By noting that the shock wave s1 < 0, (1.9), (1.10), (3.2), (3.5) and (3.13), we have∫ ∞

0

∣∣∣∣ ∫ ∞

x

(Ū1,α1 − Um)(y, t)dy

∣∣∣∣2dx
6 C

∫ ∞

0

∣∣∣∣ ∫ ∞

x

(Ū1 − Um)(y, t)dy

∣∣∣∣2dx+ C

∫ ∞

0

∣∣∣∣ ∫ ∞

x

(Ū1,α1 − Ū1)(y, t)dy

∣∣∣∣2dx
6 C[δ−1e−δt/C + δ2]. (3.23)

This proves the estimate (3.9). Therefore, the proof of Lemma 3.1 is completed.

To deal with the wave interactions from the two different characteristic fields, we divide R× (0, t) into

two parts as R× (0, t) = Ω− ∪ Ω+, where

Ω− =

{
(x, t)

∣∣∣∣x 6 s1 + s2
2

t

}
and Ω+ =

{
(x, t)

∣∣∣∣x > s1 + s2
2

t

}
.

Then, we have the following lemma concerning the wave interactions estimates:

Lemma 3.2. Let the two viscous shock waves Ū1,α1 and Ū2,α2 be as defined above. Then

|(Ū1,α1 − Um)(x, t)| = O(1)δ1e
−δ1(|x|+t)/C , in Ω+, (3.24)

|(Ū2,α2 − Um)(x, t)| = O(1)δ2e
−δ2(|x|+t)/C , in Ω−, (3.25)

|(Ū1,α1 − Um)(x, t)||(Ū2,α2)x(x, t)| = O(1)δ22δ1(e
−δ1(|x|+t)/C + e−δ2(|x|+t)/C), (3.26)

|(Ū2,α2 − Um)(x, t)||(Ū1,α1)x(x, t)| = O(1)δ21δ2(e
−δ1(|x|+t)/C + e−δ2(|x|+t)/C). (3.27)

Proof. Since the inviscid system (1.6) is strictly hyperbolic, then s1 < 0 < s2. When t is large, the two

shock waves will decouple. With this, (3.24)–(3.27) can be proved easily.

Indeed, set t0 = 4maxi=1,2{|αi|}/s2. When t 6 t0, the proofs of the estimates (3.24)–(3.27) are

obvious. When t > t0, we have, in Ω+,

x+ α1 − s1t > (s1 + s2)t/2 + α1 − s1t > (s2 − s1)t/4 > 0, (3.28)
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and by Lemma 3.1,

|(Ū1,α1 − Um)(x, t)| = O(1)δ1e
−δ1|x+α1−s1t|/C . (3.29)

It is clear that |x+ α1 − s1t| > Ct, by (3.28).

When x 6 0, we have

|x+ α1 − s1t| = x+ α1 − s1t > x+ (s1 − s2)t/4− s1t > x− 3x/2 = |x|/2. (3.30)

When x > 0, if s1 + s2 6 0,

|x+ α1 − s1t| > x+ α1 + s2t > x+ 3|α1| > x = |x|; (3.31)

if s1 + s2 > 0,

|x+ α1 − s1t| > x− (s1 + s2)t/4 > x− x/2 = |x|/2. (3.32)

Therefore, |x + α1 − s1t| > C|x|. Now, we have proved the estimate (3.24). The other estimates in

Lemma 3.2 can be treated similarly. So, we omit the details.

Therefore, the proof of Lemma 3.2 is completed.

4 Intermediate-time estimate for U − Ūα1,α2

In this section, we use Lemma 3.1, together with the estimates of Lemma 2.6, to give L2 bounds for

U − Ūα1,α2 and its x-antiderivative at time t 6 δ−2−ϑ. These bounds will serve to control the “initial

data” for the energy estimates of Section 5, where we finally conclude the proof of Theorem 1.1.

Lemma 4.1. Under the assumptions of Lemma 2.6, for t 6 δ−2−ϑ, we have

∥U − Ūα1,α2
∥2 + ∥(v − v̄α1,α2

)x∥−2 6 C
∑

a−2b>1

δa(t+ 1)b, (4.1)

and ∥∥∥∥∫ x

−∞
(U − Ūα1,α2)(y, t)dy

∥∥∥∥2
6 C

[ ∑
a−2b>0

δa(t+ 1)b + (δ−1 + (t+ 1)1/2)e−δ2t/C + δ2(t+ 1)3/2e−t/C

]
. (4.2)

In addition, there is a positive number M , depending only on U− and U+, such that, if

Mδ−2 log δ−1 6 t 6 δ−2−ϑ

(which is possible for small δ), then at time t,

∥U − Ūα1,α2∥2 + ∥(v − v̄α1,α2)x∥−2 6 Cδ1−ϑB (4.3)

and ∥∥∥∥∫ x

−∞
(U − Ūα1,α2)(y, t)dy

∥∥∥∥2 6 Cδ−ϑB , (4.4)

where B is a positive constant depending only on U−.

Proof. It is clear that the bounds (4.3) and (4.4) follow from (4.1) and (4.2), respectively. Therefore,

it is sufficient to prove (4.1) and (4.2). To begin with, we triangulate as follows:

U − Ūα1,α2 = (U − ŪR − ¯̄U) + (ŪR − ŪTW) + ¯̄U + (ŪTW − Ūα1,α2).
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Bounds for the L2-norms of these terms are given in (2.64), (2.49), (2.54) and (3.6), respectively. This

proves the estimate (4.1). To prove (4.2), we treat the case x 6 0 and x > 0 separately. First, for x 6 0,

we triangulate as follows,

U − Ūα1,α2 = (U − ŪR − ¯̄U) + (Ū1
R − Ū1

TW) + (Ū2
R − Ũm) + ¯̄U + (Ū1

TW − Ū1,α1) + (Um − Ū2,α2).

Bounds for the antiderivatives of these terms are given in (2.63), (2.50), (2.37), (2.61), (3.7) and (3.10),

respectively. This gives an estimate for
∫ 0

−∞ |
∫ x

−∞(U − Ūα1,α2)(y, t)dy|2dx. For x > 0, we triangulate

differently,

U − Ūα1,α2 = (U − ŪR − ¯̄U) + (Ū2
R − Ū2

TW) + (Ū1
R − Ũm) + ¯̄U + (Ū2

TW − Ū2,α2) + (Um − Ū1,α1).

The appropriate bounds are obtained in (2.63), (2.51), (2.36), (2.62), (3.8) and (3.9), respectively, thereby

giving an estimate for
∫∞
0

|
∫∞
x

(U − Ūα1,α2)(y, t)dy|2dx. Combining the above, and noting that∫ x

−∞
(U − Ūα1,α2)(y, t)dy = −

∫ ∞

x

(U − Ūα1,α2)(y, t)dy

by (1.11), (1.12), (1.14)–(1.16) and (2.1), we finally get (4.2).

5 Proof of Theorem 1.1

In this section, we combine the results of the previous sections to complete the proof of Theorem 1.1.

Set [
Φ

Ψ

]
=

∫ x

−∞
(U − Ūα1,α2)(y, t)dy and

[
ϕ

ψ

]
= U − Ūα1,α2 . (5.1)

First, we show the following a priori estimates:

Lemma 5.1. Given U− = [
v−
v+ ], there is a small constant ε0 depending only on U− such that, if

δ = |U+ − U−| 6 ε0 and if a solution U to (1.3)–(2.1) exists for t0 6 t 6 t1 and satisfies

∥Ψ∥L∞ , ∥v − v−∥L∞ 6 ε0,

then

sup
t06t6t1

∥(Φ,Ψ)(t)∥2 +
∫ t1

t0

∥(Φx,Ψx)(t)∥2dt+
∫ t1

t0

∫
R

(|(U1,α1)x|+ |(U2,α2)x|)Ψ2dxdt

6 C

[
∥(Φ,Ψ)(t0)∥2 + sup

t06t6t1

∥ϕ(t)∥2 + δ +

∫ t1

t0

∥ψx(t)∥2dt
]

(5.2)

and

sup
t06t6t1

[∥(ϕ, ψ)(t)∥2 + ∥ϕx(t)∥−2] +

∫ t1

t0

∥(ϕx, ψx)(t)∥−2dt

6 C

[
∥(ϕ, ψ)(t0)∥2 + ∥ϕx(t0)∥−2 + δ + δ

∫ t1

t0

∥ϕ(t)∥2dt
]
. (5.3)

Proof. First, by virtue of (5.1), we can get
Φt −Ψx = 0,

Ψt + p(v̄α1,α2 +Φx)− p(v̄α1,α2)

= Ψxx/v + (1/v − 1/V1,α1)(U1,α1)x + (1/v − 1/V2,α2)(U2,α2)x

−[p(v̄α1,α2)− p(V1,α1)− p(V2,α2) + p(vm)],

(5.4)
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and 
ϕt − ψx = 0,

ψt + (p(v̄α1,α2 + ϕ)− p(v̄α1,α2))x

= [ψx/v + (1/v − 1/V1,α1)(U1,α1)x + (1/v − 1/V2,α2)(U2,α2)x

−(p(v̄α1,α2)− p(V1,α1)− p(V2,α2) + p(vm))]x,

(5.5)

where, Vi,αi = Vi(x+ αi − sit), etc.

Linearizing the second equation in (5.4), we have

Ψt + p′(v̄α1,α2)Φx = Ψxx/v̄α1,α2 + (1/v − 1/v̄α1,α2)Ψxx

+ (1/v − 1/V1,α1)(U1,α1)x + (1/v − 1/V2,α2)(U2,α2)x

− [p(v̄α1,α2)− p(V1,α1)− p(V2,α2) + p(vm)] +O(Φ2
x). (5.6)

We multiply the first equation in (5.4) and (5.6) by Φ and −Ψ/p′(v̄α1,α2), respectively, and add and

integrate. Noting that (1/p′(v̄α1,α2))t = p′′(|(U1,α1)x|+ |(U2,α2)x|)/(p′)2, by (3.5) and (1.2), we get

sup
t06t6t1

∥(Φ,Ψ)(t)∥2 +
∫ t1

t0

∫
R

(|(U1,α1)x|+ |(U2,α2)x|)Ψ2dxdt+

∫ t1

t0

∥Ψx∥2dt

6 C∥(Φ,Ψ)(t0)∥2 + C

∫ t1

t0

∫
R

{|(U1,α1)x|+ |(U2,α2)x|)|ΨΨxx|+ |ΦxΨΨxx|

+(|Φx|+ |V2,α2 − vm|)|(U1,α1)x||Ψ|+ (|Φx|+ |V1,α1 − vm|)|(U2,α2)x||Ψ|
+|p(v̄α1,α2)− p(V1,α1)− p(V2,α2) + p(vm)||Ψ|+ |Ψ|Φ2

x}dxdt

= C∥(Φ,Ψ)(t0)∥2 +
6∑

i=1

Ki. (5.7)

Using the Young’s inequality, we have

K1 6 1

4

∫ t1

t0

∫
R

(|(U1,α1)x|+ |(U2,α2)x|)Ψ2dxdt+ C

∫ t1

t0

∫
R

(|(U1,α1)x|+ |(U2,α2)x|)Ψ2
xxdxdt, (5.8)

and

K2 6 C∥Ψ∥L∞

∫ t1

t0

(∥Φx∥2 + ∥Ψxx∥2)dt. (5.9)

By virtue of Young’s inequality and Lemma 3.2, we obtain

K3 6 1

4

∫ t1

t0

∫
R

|(U1,α1)x||Ψ|2dxdt+ C

∫ t1

t0

∫
R

|(U1,α1)x|Φ2
x

+ C

∫ t1

t0

∫
R

|(U1,α1)x||V2,α2 − vm|2dxdt

6 1

4

∫ t1

t0

∫
R

|(U1,α1
)x||Ψ|2dxdt+ C

∫ t1

t0

∫
R

|(U1,α1
)x|Φ2

x

+ Cδ21δ
2
2

∫ t1

t0

∫
R

(e−δ1(|x|+t)/C + e−δ2(|x|+t)/C)dxdt

6 1

4

∫ t1

t0

∫
R

|(U1,α1)x||Ψ|2dxdt+ C

∫ t1

t0

∫
R

|(U1,α1)x|Φ2
x + Cδ2. (5.10)

Similarly, we have

K4 6 1

4

∫ t1

t0

∫
R

|(U2,α2)x||Ψ|2dxdt+ C

∫ t1

t0

∫
R

|(U2,α2)x|Φ2
x + Cδ2. (5.11)



22 Zhang Y H et al. Sci China Math

Applying the mean value theorem, Lemma 3.2, (1.9), (1.10) and Young’s inequality , we get

K5 6 C

∫ t1

t0

∫
R

|V1,α1
− vm||V2,α2

− vm||Ψ|dxdt

6 Cδ1δ2

∫ t1

t0

∫
R

(e−δ1(|x|+t)/C + e−δ2(|x|+t)/C)|Ψ|dxdt

6 Cδ̄2
∫ t1

t0

∫
R

e−δ̄(|x|+t)/C |Ψ|dxdt

6 Cδ̄3
∫ t1

t0

∫
R

e−δ̄(|x|+t)/Cdxdt+
δ̄

2C

∫ t1

t0

e−δ̄t/C∥Ψ(t)∥2dt

6 Cδ +
1

2
sup

t06t6t1

∥Ψ(t)∥2dt. (5.12)

It is easy to see that

K6 6 C∥Ψ∥L∞

∫ t1

t0

∥Φx∥2dt. (5.13)

Combining the above relations (5.7)–(5.13), we obtain

sup
t06t6t1

∥(Φ,Ψ)(t)∥2 +
∫ t1

t0

∫
R

(|(U1,α1)x|+ |(U2,α2)x|)Ψ2dxdt+

∫ t1

t0

∥Ψx(t)∥2dt

6 C

[
∥(Φ,Ψ)(t0)∥2 + δ + (∥Ψ∥L∞ + |(U1,α1)x|+ |(U2,α2)x|)

∫ t1

t0

(∥Φx(t)∥2 + ∥Ψxx(t)∥2)dt
]
. (5.14)

Next, we estimate the term
∫ t1
t0

∥Φx∥2dt. We differentiate the first equation in (5.4) with respect to x,

multiply by −Ψ, and add to −Φx times (5.6). Integrating, we then get∫ t1

t0

∥Φx(t)∥2dt 6 C

[
sup

t06t6t1

(∥(Ψ(t)∥2 + ∥Φx(t)∥2) +
∫ t1

t0

∥Ψx(t)∥2dt
]

+ C

∫ t1

t0

∫
R

|Φx|{|Ψxx|+ |v − v̄α1,α2 ||Ψxx|+ |v − V1,α1 ||(U1,α1)x|

+ |v − V2,α2 ||(U2,α2)x|+ |p(v̄α1,α2)− p(V1,α1)− p(V2,α2) + p(vm)|}dxdt. (5.15)

Using the similar arguments just to that as before, we can obtain∫ t1

t0

∥Φx(t)∥2dt 6 C

[
sup

t06t6t1

(∥Ψ(t)∥2 + ∥Φx(t)∥2) + δ2 +

∫ t1

t0

(∥Ψx∥2 + ∥Ψxx∥2)dt
]
. (5.16)

Then, (5.2) follows from (5.14) and (5.16) immediately. Now, we turn to the proof of the estimate (5.3).

Multiplying the first equation in (5.5) by [p(v̄α1,α2)−p(v̄α1,α2 +ϕ)] and the second equation in (5.5) by ψ

and adding, we have[
ψ2

2
+ (p(v̄α1,α2)ϕ−

∫ v̄α1,α2−ϕ

v̄α1,α2

p(τ)dτ)

]
t

= −[ψ(p(v̄α1,α2 + ϕ)− p(v̄α1,α2))]x − [p(v̄α1,α2 + ϕ)− p(v̄α1,α2)− p′(v̄α1,α2)ϕ](v̄α1,α2)t

+ ψ[ψx/v + (1/v − 1/V1,α1)(U1,α1)x + (1/v − 1/V2,α2)(U2,α2)x

− (p(v̄α1,α2)− p(V1,α1)− p(V2,α2) + p(vm))]x. (5.17)

Using the Taylor formula, we get

C−1ϕ2 6 p(v̄α1,α2)ϕ−
∫ v̄α1,α2−ϕ

v̄α1,α2

p(τ)dτ 6 Cϕ2, (5.18)
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and

C−1ϕ2 6 p(v̄α1,α2 + ϕ)− p(v̄α1,α2)− p′(v̄α1,α2)ϕ 6 Cϕ2. (5.19)

Integrating (5.17) over R× (t0, t1) and using (5.18) and (5.19), we then obtain

sup
t06t6t1

∥(ϕ, ψ)(t)∥2 6 C

[
∥(ϕ, ψ)(t0)∥2 +

∫ t1

t0

∫
R

|(v̄α1,α2)t|ϕ2dxdt

+

∫ t1

t0

∫
R

ψ[ψx/v + (1/v − 1/V1,α1)(U1,α1)x + (1/v − 1/V2,α2)(U2,α2)x

− (p(v̄α1,α2)− p(V1,α1)− p(V2,α2) + p(vm))

]
x

dxdt

= C[∥(ϕ, ψ)(t0)∥2 + L1 + L2. (5.20)

By virtue of Lemma 3.1, we get

L1 6 Cδ2
∫ t1

t0

∥ϕ(t)∥2dt. (5.21)

If we integrate the term L2 by parts with respect to x, the boundary term will be

C

∫ t1

t0

ψ(0, τ)

([
p(v)− ux

v

])
(0, τ)dτ

(the bracket denotes jump), which is identically zero by [9, Theorem 1.3]. Therefore,

L2 6 −C
∫ t1

t0

∥ψx(t)∥2dt+ C

∫ t1

t0

∫
R

[|ψx||(U1,α1)x||v − V1,α1 |

+ |ψx||(U2,α2)x||v − V2,α2 |+ |ψx||p(v̄α1,α2)− p(V1,α1)− p(V2,α2) + p(vm)|]dxdt

= −C
∫ t1

t0

∥ψx(t)∥2dt+ L1
2 + L2

2 + L3
2. (5.22)

By virtue of triangle inequality, Cauchy-Schwarz inequality, Lemmas 3.1 and 3.2, we obtain

L1
2 6 C

∫ t1

t0

∫
R

|ψx||(U1,α1)x|(|V2,α2 − vm|+ |ϕ|)dxdt

6 C

∫ t1

t0

∫
R

|(U1,α1)x||ψx|2dxdt+ C

∫ t1

t0

∫
R

|(U1,α1)x||V2,α2 − vm|2dxdt

+ C

∫ t1

t0

∫
R

|(U1,α1)x|(ψ2
x + ϕ2)dxdt

6 Cδ2
∫ t1

t0

(∥ϕ(t)∥2 + ∥ψx(t)∥2)dt+ Cδ2. (5.23)

Similarly, we have

L2
2 6 Cδ2

∫ t1

t0

(∥ϕ(t)∥2 + ∥ψx(t)∥2)dt+ Cδ2. (5.24)

Applying mean value theorem, Cauchy-Schwarz inequality, Lemma 3.2, (1.9) and (1.10), we get

L3
2 6 C

∫ t1

t0

∫
R

|V1,α1 − vm||V2,α2 − vm||ψx|dxdt

6 Cδ̄

∫ t1

t0

∥ψx(t)∥2dt+ Cδ̄3
∫ t1

t0

∫
R

e−δ̄(|x|+t)/Cdxdt

6 Cδ

∫ t1

t0

∥ψx(t)∥2dt+ Cδ.

(5.25)



24 Zhang Y H et al. Sci China Math

Inserting the estimates (5.23)–(5.25) into (5.22), we obtain

L2 6 −C
∫ t1

t0

∥ψx(t)∥2dt+ Cδ

∫ t1

t0

(∥ϕ(t)∥2 + ∥ψx(t)∥2)dt+ Cδ. (5.26)

Combining the relations (5.20), (5.21) and (5.26), we then get

sup
t06t6t1

∥(ϕ, ψ)(t)∥2 +
∫ t1

t0

∥ψx(t)∥2dt 6 C[∥(ϕ, ψ)(t0)∥2 + δ

∫ t1

t0

∥ϕ(t)∥2dt+ δ]. (5.27)

Finally, we obtain a piecewise L2 bound for the first order derivative of the variable ϕ to compete the

proof of (5.3). Setting H(x, t) = log v − log v̄α1,α2 and using (1.11), (1.12) and (2.1), we can get

ψt + (p(v)− p(v̄α1,α2))x = Hxt + [(1/v̄α1,α2 − 1/V1,α1)(U1,α1)x + (1/v̄α1,α2 − 1/V2,α2)(U2,α2)x

− (p(v̄α1,α2)− p(V1,α1)− p(V2,α2) + p(vm))]x. (5.28)

Multiplying (5.28) by −Hx and integrating, we obtain

sup
t06t6t1

∥Hx(t)∥−2
+

∫ t1

t0

∥Hx(t)∥−2
dt

6 C

[
∥Hx(t0)∥−2

+

∫ t1

t0

−
∫

|ϕ||(v̄α1,α2)x||Hx|dxdt+
∫ t1

t0

−
∫
ψtHxdxdt

+

∫ t1

t0

−
∫

|Hx|{[(1/v̄α1,α2 − 1/V1,α1)(U1,α1)x + (1/v̄α1,α2 − 1/V2,α2)(U2,α2)x

+ (p(v̄α1,α2)− p(V1,α1)− p(V2,α2) + p(vm))]x}dxdt
]

=

6∑
i=1

Mi. (5.29)

By the definition of H and (3.5), we have

M1 6 C[∥ϕx(t0)∥−2
+ ∥(v̄α1,α2)x(t0)∥−2] 6 C[∥ϕx(t0)∥−2

+ δ3]. (5.30)

Applying Cauchy-Schwarz inequality and (3.5), we get

M2 6 Cδ2
∫ t1

t0

(∥Hx(t)∥−2
+ ∥ϕ(t)∥2)dt. (5.31)

Noting

ψtHx = (ψHx)t − (ψHt)x +Htψx = (ψHx)t − (ψHt)x + ψ2
x/v + (1/v − 1/v̄α1,α2)(ūα1,α2)xψx,

and [9, Theorem 1.3], we obtain

M3 6 sup
t06t6t1

(
1

4
∥Hx(t)∥−2

+ C∥ψ(t)∥2
)
+ C

∫ t1

t0

∥ψx(t)∥−2
dt

+ C

∫ t1

t0

−
∫

|(ūα1,α2)x||ϕ||ψx|dxdt+ C

∫ t1

t0

|[ψHt](0, t)|dt

6 sup
t06t6t1

(
1

4
∥Hx(t)∥−2

+ C∥ψ(t)∥2
)
+ C

∫ t1

t0

∥ψx(t)∥−2
dt

+ Cδ + Cδ2
∫ t1

t0

∥ϕ(t)∥2dt. (5.32)
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Using Cauchy-Schwarz inequality, Lemmas 3.1 and 3.2, we have

M4 +M5 6 Cδ2 + Cδ2
∫ t1

t0

∥Hx(t)∥−2
dt. (5.33)

By using mean value theorem, Cauchy-Schwarz inequality and Lemma 3.2, we obtain

M6 6 C

∫ t1

t0

−
∫
[|V1,α1 − vm||(V2,α2)x|+ |V2,α2 − vm||(V1,α1)x|]|Hx|dxdt

6 Cδ2 + Cδ2
∫ t1

t0

∥Hx(t)∥−2
dt. (5.34)

From (5.29)–(5.34), we get

sup
t06t6t1

∥Hx(t)∥−2
+

∫ t1

t0

∥Hx(t)∥−2
dt

6 C

[
sup

t06t6t1

∥ψ(t)∥2 + ∥ϕx(t0)∥−2
+ δ + δ2

∫ t1

t0

∥ϕ(t)∥2dt+
∫ t1

t0

∥ψx(t)∥−2
dt

]
. (5.35)

By the definition of H and (5.35), we have

sup
t06t6t1

∥ϕx(t)∥−2
+

∫ t1

t0

∥ϕx(t)∥−2
dt

6 C

[
sup

t06t6t1

∥(ϕ, ψ)(t)∥2 + ∥ϕx(t0)∥−2
+ δ + δ2

∫ t1

t0

∥ϕ(t)∥2dt+
∫ t1

t0

∥ψx(t)∥−2
dt

]
. (5.36)

Then, (5.3) follows from (5.27) and (5.36) immediately, and the proof of Lemma 5.1 is completed.

In the following lemma, we apply the local existence result in [9], the intermediate-time result,

Lemma 2.6 and the a priori estimates above to obtain global existence. It should be mentioned that

the local and global well-posedness of the system (1.1) or the corresponding non-isentropic system with

discontinuous initial data have been systematically studied by Hoff, etc., see [9–15].

Lemma 5.2. Given U− = [ lv−
v+

], there is a small constant ε0 depending only on U− such that, if

δ = |U+ − U−| 6 ε0, then the Cauchy problem (1.3)–(2.1) has a unique global solution U satisfying

sup
t6τ

∥(Φ,Ψ)(τ)∥2 +
∫ ∞

t

∥(ϕ, ψ)(τ)∥2dτ 6
{

Cδ−ϑB [1 + δt+ δ−1e(−δ2t)/C ], t 6 t0,

Cδ−ϑB , t > t0,
(5.37)

sup
06τ

[
∥(ϕ, ψ)(τ)∥2 + ∥ϕx(τ)∥−2

]
+

∫ ∞

0

∥(ϕx, ψx)∥−2dτ 6 Cδ1−ϑB , (5.38)

and

sup
0<τ

[g(τ)∥ux(·, τ)∥2 + g(τ)2(∥uτ (·, τ)∥2 + ∥(ux/v)x(·, τ)∥−2
)]

+

∫ ∞

0

[g(τ)2(∥uτ (·, τ)∥2 + ∥(ux/v)x(·, τ)∥−2
) + g(τ)2∥uxτ (·, τ)∥2] 6 C, (5.39)

where t0 =Mδ−2 log δ−1, M and B are positive constants depending only on U−, and g(τ) = min{1, τ}.

Proof. We take t0 as indicated above, so that the estimates (4.3) and (4.4) hold. Adding a small

multiple of (5.3) to δ times (5.2), we see that, for t > t0,

sup
t06t6t1

∥(Φ,Ψ)(t)∥2 +
∫ t1

t0

∥(Φx,Ψx)∥2dt+
∫ t1

t0

∫
R

(|(U1,α1)x|+ |(U2,α2)x|)Ψ2dxdt 6 Cδ−ϑB , (5.40)
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and

sup
t06t6t1

[∥(ϕ, ψ)(t)∥2 + ∥ϕx(t)∥−2] +

∫ t1

t0

∥(ϕx, ψx)∥−2dt 6 Cδ1−ϑB . (5.41)

These hold as a priori bounds, i.e., provided that v − v− and ∥Ψ∥L∞ remain small. On the other hand,

(5.40) and (5.41) imply that ∥Ψ∥4L∞ 6 C∥Ψ∥2∥ψ∥2 6 Cδ1−2ϑB and ∥ϕ∥4L∞ 6 ∥ϕ∥2∥ϕx∥−2 6 Cδ2−2ϑB ,

both of which are arbitrarily small, provided that δ is sufficiently small. These observations, together

with the local existence result, [9, Theorem 1.3], and the intermediate-time result, Lemma 2.6, prove the

global existence of U , and show that (5.40) and (5.41) hold for all t > t0. (5.37) then follows from (5.40)

and (4.2); (5.38) follows from (5.41), (4.1) and the triangulation∫ t0

0

∥(ϕx, ψx)∥−2dτ 6 C

∫ t0

0

−
∫
[|∆Ux|2 + |(ŪR)x|2 + | ¯̄Ux|2 + |(Ūα1,α2)x|2]dxdτ

6 C
∑

a−2b>1

δa(t0 + 1)b 6 Cδ1−ϑB

by (2.64), (2.31), (2.56) and (3.5). Finally, (5.39) is a consequence of [9, Theorem 1.3] and the bounds

(5.37) and (5.38).

Proof of Theorem 1.1. First, it is easy to see that, if U ϵ and U are the solutions to (1.1)–(1.3) and

(1.3)–(2.1), respectively, then

U ϵ(x, t) = U

(
x

ϵ
,
t

ϵ

)
. (5.42)

The global existence of U ϵ, its regularity and the information (1.17) concerning the jump discontinuities

in U ϵ then follow directly from [9, Theorem 1.3] and Lemma 5.2. To prove Theorem 1.1, it is sufficient

to prove the convergence results (1.18) and (1.19). Setting G(t) = ∥(U − Ūα1,α2)(·, t)∥2 and using (5.37)–

(5.39) and (1.1), we have
∫∞
t0

{G(t)+ | ddtG(t)|}dt <∞. This yields limt→∞ ∥(U −Ūα1,α2)(·, t)∥2 = 0, from

which and Sobolev’s inequality it follows

lim
t→∞

sup
x ̸=0

|U(x, t)− Ūα1,α2(x, t)| = 0.

This together with the estimate (1.17) gives

lim
t→∞

sup
x∈R1

|U(x, t)− Ūα1,α2
(x, t)| = 0. (5.43)

Noting (1.15) and the definitions of Ū1, Ū2 and Ūα1,α2 (see Lemma 3.1), we have

Ū ϵ
αϵ

1,α
ϵ
2
(x, t) = Ū ϵ

1(x− s1t+ α1ϵ) + Ū ϵ
2(x− s2t+ α2ϵ)− Um

= Ū1

(
x− s1t+ α1ϵ

ϵ

)
+ Ū2

(
x− s2t+ α2ϵ

ϵ

)
− Um

= Ū1

(
x− s1t

ϵ
+ α1

)
+ Ū ϵ

2

(
x− s2t

ϵ
+ α2

)
− Um

= Ūα1,α2

(
x

ϵ
,
t

ϵ

)
. (5.44)

Then, (1.19) follows from (5.42)–(5.44) immediately. By using (6.61) and (6.64), one can write

U ϵ(x, t)− U0(x, t) = U ϵ(x, t)− Ū ϵ
αϵ

1,α
ϵ
2
(x, t) + Ū ϵ

αϵ
1,α

ϵ
2
(x, t)− U0(x, t)

=

(
U

(
x

ϵ
,
t

ϵ

)
− Ūα1,α2

(
x

ϵ
,
t

ϵ

))
+

(
Ūα1,α2

(
x

ϵ
,
t

ϵ

)
− U0(x, t)

)
. (5.45)

From (5.43), it is easy to see that

lim
ϵ→0

sup
|x−sit|>h,i=1,2

∣∣∣∣U(xϵ , tϵ
)
− Ūα1,α2

(
x

ϵ
,
t

ϵ

)∣∣∣∣ = 0. (5.46)
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By virtue of (1.20) and Lemma 3.1, we have

lim
ϵ→0

sup
|x−sit|>h,i=1,2

∣∣∣∣Ūα1,α2

(
x

ϵ
,
t

ϵ

)
− U0(x, t)

∣∣∣∣ = 0. (5.47)

Then, (1.18) follows from (5.45)–(5.47) immediately.

From (1.5), it is clear that

U0(x, t) = U0

(
x

ϵ
,
t

ϵ

)
. (5.48)

By (5.45) and (5.48), (1.20) follows directly from (5.39), Lemma 3.1 and Sobolev inequality.

Therefore, the proof of Theorem 1.1 is completed.
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