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L1 convergence to the Barenblatt solution for
compressible Euler equations with damping
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Abstract

We study the asymptotic behavior of compressible isentropic flow through
porous medium when the initial mass is finite. The model system is the com-
pressible Euler equation with frictional damping. As t → ∞, the density is con-
jectured to obey to the well-known porous medium equation and the momentum
is expected to be formulated by Darcy’s law. In this paper, we prove that any L∞

weak entropy solution to the Cauchy problem of damped Euler equations with fi-
nite initial mass converges strongly in the natural L1 topology with decay rates
to the Barenblatt’s profile of porous medium equation. The density function tends
to the Barenblatt’s solution of porous medium equation while the momentum is
described by the Darcy’s law. The results are achieved through a comprehensive
entropy analysis, capturing the dissipative character of the problem.

1. Introduction

This paper is the continuation of the program toward the mathematical justi-
fication of Darcy law as long time asymptotic limit for compressible isentropic
porous medium flow, modeled by the following Cauchy problem of compressible
Euler equation with frictional damping,

ρt +(ρu)x = 0,

(ρu)t +(ρu2 + p(ρ))x =−αρu,

ρ(x,0) = ρ0(x), u(x,0) = u0(x).
(1.1)

Here ρ , u and p = κργ , κ = (γ−1)2

4γ
,(1 < γ < 3) denotes density, velocity, mo-

mentum and pressure, respectively. α > 0 is a given positive constant modeling
frictional force induced by the medium. We also use momentum m =: ρu in what
follows for convenience. For simplicity, we assume α = κ = (γ−1)2

4γ
. Such choice
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of constants κ and α is purely for convenience, which simplifies the form of the
entropy functions we employed below.

Because of the dissipative nature of frictional force, it is natural to expect the
inertial terms in the momentum equation decay to zero faster than other terms
so that the pressure gradient force is balanced by the frictional force, which was
stated as Darcy law. In other words, as t → ∞, the density is conjectured to obey
to the well-known porous medium equation and the momentum is expected to be
formulated by Darcy law, observed in experiments. Therefore, time asymptotically,
the system (1.1) is conjectured to be equivalent to the following decoupled system{

ρ̄t = (ρ̄γ)xx, Porous Medium Equation
m̄ =−(ρ̄γ)x, Darcy Law.

(1.2)

The particular emphasis here is when the initial total mass is finite allowing
vacuum states in the solutions initially, namely,∫ +∞

−∞

ρ(x, t) dx =
∫ +∞

−∞

ρ̄(x, t) dx =
∫ +∞

−∞

ρ0(x) dx = M < ∞,

in view of the mass conservation. We shall prove in this paper the L1 conver-
gence from any L∞ entropy weak solution of the compressible Euler equations
to the Barenblatt solution [2] of the corresponding porous medium equation car-
rying finite total mass. The first evidence toward this expectation was hinted in
the inspiring paper of Liu [26] through an interesting explicit solution which be-
haves as the Barenblatt’s solution of porous medium equation. Recent evidence
was provided by Huang, Marcati and Pan [21] for L∞ entropy weak solution for
γ ∈ ( 1+

√
5

2 ,
√

2+1) measured in the energy norm of porous medium equation. The
purpose of current paper is to finally provide a complete treatment to this case
when γ ∈ (1,3), with measurements in both L1 (mass norm) and Lγ+1 (energy
norm) and thus in Lp for 1≤ p≤ γ +1.

Mathematical study of system (1.1) dated back to 1970s. Following the pioneer
work of Nishida [33], many contributions have been made for this problem. In the
case away from vacuum, system (1.1) can be transferred to the damped p-system
by changing to the Lagrangian coordinates; see [43]. The frictional damping pre-
vents the breaking of waves with small amplitude, leading to the global existence
of smooth solutions when initial data is small and smooth [33]. However, waves
break down in finite time when the initial derivatives of initial data exceed certain
threshold [45]. The global existence of weak solutions in Lp was established by
the method of compensated compactness in [10], [11], [25] and [46]. The global
BV solutions were proved in [27], [7] and [9]. The conjecture mentioned above
has been first justified by Hsiao and Liu in [13] and [14], and further improved by
many mathematicians for small smooth or piecewise smooth solutions away from
vacuum based on the energy estimates for derivatives; see [12], [15], [16], [17],
[18], [30], [34], [35], [36], and [44]. Recently, Dafermos and Pan [9] constructed
the global BV solutions to damped p-system and proved the conjecture with sharp
decay rates in L2. In these results, the solutions of damped p-system were shown to
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converge to the self-similar solutions of the corresponding porous medium equa-
tions constructed in [40] since the end-states of the initial density are away from
vacuum.

When a vacuum occurs in the solution, the difficulty of the problem greatly
increased mainly due to the interaction of nonlinear convection, lower order dis-
sipation of damping and the resonance due to vacuum. It is known that the non-
linearity is the reason for shock formation in a hyperbolic system. For hyperbolic
conservation laws, the self-similarity is an important feature in constructing funda-
mental Riemann solutions and in describing the large time behaviors of solutions.
Although the damping provides weak dissipation, it breaks the self-similarity of
the system which is crucial for the large weak solutions. Another difficulty is due
to the resonance near vacuum which develops a new singularity; see [28] and [29].
Due to this new singularity, it is very difficult to obtain the solutions with any de-
gree of regularity. This makes (1.1) difficult to understand analytically and makes
the construction of effective numerical methods for computing solutions a highly
non-trivial problem. Indeed, the only global weak solution with vacuum is con-
structed in L∞ space by using the method of compensated compactness; see Ding,
Chen and Luo [10] for 1 < γ ≤ 5

3 and Huang and Pan [19] for 1 ≤ γ < 3. Thus,
to study the large time behavior of solution of (1.1) with vacuum, it is suitable to
consider the L∞ weak solution.

Definition 1.1. For any T > 0, the bounded measurable functions (ρ,m)(x, t) ∈
L∞(R× [0,T ]) are called entropy solutions of (1.1), if

ρt +mx = 0,

mt +(m2

ρ
+κργ)x +αm = 0,

ηt +qx +αηmm≤ 0,

(1.3)

hold in the sense of distributions, where (η ,q) is any weak convex entropy–flux
pair (η(ρ,m),q(ρ,m)) satisfying

∇q = ∇η∇ f , f = (m,
m2

ρ
+κρ

γ)t , η(0,0) = 0. (1.4)

As the L∞ weak solution does not have any degree of regularity, the methods
for the case away from vacuum are not applicable here. Earlier attempts were
made by Huang and Pan [19], where the authors followed the rescaling argument
due to Serre and Hsiao [42] and obtained the first justification to the conjecture for
vacuum case. It showed that the density in the L∞ weak entropy solutions of (1.1)
converges to the similarity solution of porous medium equation along the level
curve of the diffusive similarity profiles provided that one of the initial end-states
is nonzero. The long time behavior of the momentum is not known however. This
is far from satisfactory. In [20], Huang and Pan developed a new technique based
on the conservation of mass and entropy analysis to attack this conjecture. They
showed that the L∞ weak entropy solutions with vacuum, selected by the physical
entropy-flux pairs, converge strongly in Lp(R) (p ≥ p0 for some p0 ≥ 2) with
decay rates to the similarity solution of the porous medium equation determined
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uniquely by the end-states and the mass distribution of the initial data, provided
that the end-states are away from vacuum. This approach seems remarkable since
it does not need smallness assumptions on the solutions. Inspired by this result,
Huang, Marcati and Pan [21] further studied this problem with finite total mass,
where the asymptotic profile is the celebrated Barenblatt’s solution of the porous
medium equation. More precisely, this result is cited below:
Theorem (Huang-Marcati-Pan, [21]) Suppose 0≤ ρ0(x) ∈ L1(R)∩L∞(R) and

0 < M =
∫ +∞

−∞

ρ0(x) dx < ∞.

Let (ρ,m) be an L∞ entropy solution of the Cauchy problem (1.1), satisfying the
following estimates

0≤ ρ(x, t)≤C, |m(x, t)| ≤Cρ(x, t), (1.5)

where the constant C is independent of t. Let ρ̄ be the Barenblatt’s solution of
porous medium equation (1.2) with mass M and m̄ =−(ρ̄γ)x which satisfies

‖ρ̄‖2
L2 ≤C(1+ t)−

1
γ+1 ,

‖ρ̄‖γ

Lγ ≤C(1+ t)−
γ−1
γ+1 .

(1.6)

Define
y =−

∫ x

−∞

(ρ− ρ̄)(r, t) dr.

If y(x,0) ∈ L2(R), then there exist positive constants k1 = min{ γ2

(γ+1)2 , γ−1
γ
}, k2 =

min{ γ2

(γ+1)2 , 1
γ
} and C such that for any ε > 0,

‖(ρ− ρ̄)(x, t)‖2
L2 ≤C(1+ t)−k1+ε , if 1 < γ ≤ 2,

‖(ρ− ρ̄)(x, t)‖γ

Lγ ≤C(1+ t)−k2+ε , if γ ≥ 2.
(1.7)

Furthermore,
k1 > 1

γ+1 , if 1+
√

5
2 < γ ≤ 2,

k2 > γ−1
γ+1 , if 2≤ γ < 1+

√
2.

(1.8)

Remark 1.1. Since Barenblatt’s solution ρ̄ decays itself, it is necessary to compare
the decay rate of ρ̄ with that of ρ− ρ̄ . This theorem shows that ‖ρ− ρ̄‖L2 decays
faster than ‖ρ̄‖L2 when 1+

√
5

2 < γ ≤ 2 and ‖ρ − ρ̄‖Lγ decays faster than ‖ρ̄‖Lγ

when 2≤ γ < 1+
√

2. Thus this theorem states that any L∞ entropy weak solutions
must converge to the Barenblatt’s solution of PME with the same mass when γ ∈
( 1+
√

5
2 ,1+

√
2).

Remark 1.2. The entropy dissipation method introduced in [20] and [21] is an
effective approach in proving the large time asymptotic behavior for L∞ weak en-
tropy solutions for hyperbolic conservation laws with dissipation. Further applica-
tion of such approach can be found in [39] for an initial boundary value problem
and in [22] for the Euler-Poisson system modeling semi-conductor device.
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Although this is the first result providing the convergence of L∞ weak entropy
solutions of (1.1) to the Barenblatt’s solution of (1.2), the result itself is not defini-
tive for several reasons. One may thus ask the following questions:

– Question 1: Is it possible to remove the assumption (1.5)? The assumption
(1.5) is essential in the proof of [21]. This assumption is quite reasonable since
the solutions obtained in [10] and [19] do satisfy this condition where the in-
variant region theory is applied to the viscosity regularized system. On the
other hand, there is no uniqueness theory available for the L∞ weak entropy
solutions of (1.1), it is not clear whether there is any uniformly bounded en-
tropy weak solutions of (1.1) that does not satisfy (1.5) with uniform constant
C. Therefore, it is natural to ask this question.

– Question 2: Is it possible to prove the convergence for any γ ∈ (1,3) not only
on the interval ( 1+

√
5

2 ,1 +
√

2) as in the last Theorem? Although the interval

( 1+
√

5
2 ,1 +

√
2) contains some physical cases, most physical gases live in the

larger interval (1,3). This generalization is thus important from physical point
of view.

– Question 3: Is it possible to prove decay of ‖ρ− ρ̄‖L1? Since the compressible
Euler equation is conserved, it is natural to measure the difference between ρ

and the Barenblatt solution ρ̄ in L1 space. Furthermore, the L1 norm does not
decay for either ρ or ρ̄ , the L1 decay is very convincing. Therefore, the last
question is whether it is possible to obtain an L1 convergence result.

In this paper, we will address these three questions listed above and give def-
inite answers to them. After a quick review of some information on Barenblatt’s
solution in Section 2, we will first prove in Section 3 the following invariant region
theory for L∞ weak entropy solution to (1.1).

Theorem 1.1. Suppose that (ρ0,u0)(x) ∈ L∞(R) satisfies

0≤ ρ0(x)≤C, |m0(x)| ≤Cρ0(x).

Let (ρ,u)∈ L∞(R× [0,T ]) be an L∞ weak entropy solution of the system (1.1) with
γ > 1. Then (ρ,m) satisfies

0≤ ρ(x, t)≤C, |m(x, t)| ≤Cρ(x, t), (1.9)

where the constant C depends solely on the initial data.

Remark 1.3. Theorem 1.1 is valid for L∞ weak entropy solutions to the homo-
geneous compressible Euler systems, this is quite clear from the proof in section
3 below. This theorem is an invariant region theorem for the weak solutions to
compressible Euler equations with damping. In the invariant region theorem [6],
the derivative property of solution is essential. But here it is impossible to use any
derivative properties due to the lack of regularity. Theorem 1.1 is proved by choos-
ing infinitely many convex weak entropies. This idea dated back to Dafermos [8]
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and Serre [41]. Similar idea appears in [24] and [38] for homogeneous two by two
system including compressible Euler equations and elastodynamics. The distinct
feature in our proof for this thoerem is the choice of entropies designed for the
dissipative source term.

In Section 4, we will pursue the sharper decay rates of the density to the Baren-
blatt’s solution, which will finally give the decay rates in L1 distance. These are
stated in the following Theorem.

Theorem 1.2. Suppose ρ0(x) ∈ L1(R)∩L∞(R), u0(x) ∈ L∞(R) and

M =
∫

∞

−∞

ρ0(x) dx > 0.

Let 1 < γ < 3 and (ρ,m) be an L∞ entropy solution of the Cauchy problem (1.1).
Let ρ̄ be the Barenblatt’s solution of porous medium equation (1.2) with mass M
and m̄ =−(ρ̄γ)x. Define

y =−
∫ x

−∞

(ρ− ρ̄)(r, t) dr.

If y(x,0) ∈ L2(R), then for any ε > 0 and t > 0,

‖(ρ− ρ̄)(·, t)‖γ+1
Lγ+1 ≤C(1+ t)−1+ 1

2(γ+1) +ε
,

‖(ρ− ρ̄)(·, t)‖L1 ≤C(1+ t)−
1

4(γ+1) +ε
.

(1.10)

Remark 1.4. Due to the mass conservation law, it is natural to use L1 norm to
measure the difference between the entropy solution ρ and Barenblatt’s solution
ρ̄ . (1.10) implies that any L∞ entropy solutions must converge to the Barenblatt’s
solution of PME with the same mass for 1 < γ < 3. This is becasue the L1 norm is
conserved for both ρ and ρ̄ . Furthermore, we remark that the Lγ+1 norm of ρ− ρ̄

decays faster than ρ̄ , since for the latter one has from Lemma 2.2 below that

‖ρ̄(·, t)‖γ+1
Lγ+1 ≤C(1+ t)−

γ

γ+1

which decays slower than the rate in (1.10) by (1+ t)
1

2(γ+1) roughly.

We now make some comments on the new ideas and approaches in this paper,
based on intensive entropy analysis. In the proof of Theorem 1.1, infinitely many
convex entropy functions are used. In the proof of Theorem 1.2, we first follow
the method of [21] to pave the road. With the help of a sharp estimate on the
degeneracy of p(ρ) at vacuum proved in Lemma 3.1, a carefully chosen entropy
is applied to obtain a much sharper decay in Lγ+1 norm of the density, which is
missing in [21]. This much faster decay rate guaranteed that ‖ρ − ρ̄‖Lγ+1 decays
faster than ‖ρ̄‖Lγ+1 for any γ ∈ (1,3). Finally, this refined estimate, together with
a key observation on the distribution of ‖ρ− ρ̄‖L1 over the support of ρ̄ , leads to
the L1 decay rates in Theorem 1.2.
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In the last section, we further discuss a Barenblatt type solution of (1.1) with a
particular initial data, constructed by T. Liu in [26]. This interesting solution, we
call it Liu’s solution, behaves just like Barenblatt’s solution and thus could serve as
the large time asymptotic ansatz for solutions of (1.1) with finite total mass. The-
orem 1.2, together with the results in [26], implies the L1 decay to Liu’s solution
as well. The reason for the choice of Barenblatt’s solution is simply because of
its explicit form which is not available for Liu’s solution. Furthermore, the decay
rates in Theorem 1.2 might not be optimal, some explanations will be presented
there at the end of the paper.

2. Barenblatt’s solutions

According to [21], the solutions to (1) with finite total mass should converge
in large time to the fundamental solutions of the porous media equation, i.e., the
Barenblatt’s solutions [2]. In this section, we provide some background informa-
tion on the Barenblatt’s solutions.

Consider {
ρ̄t = (ρ̄γ)xx,

ρ̄(−1,x) = Mδ (x), M > 0,
(2.1)

which admits a unique solution (c.f. [1], [2]) given below

ρ̄(x, t) = (t +1)−
1

γ+1 {(A−Bξ
2)+}

1
γ−1 . (2.2)

Here ξ = x(t +1)−
1

γ+1 , ( f )+ = max{0, f}, B = γ−1
2γ(γ+1) and A is determined by

2A
γ+1

2(γ−1) B−
1
2

∫ π
2

0
(cosθ)

γ+1
γ−1 dθ = M. (2.3)

Due to the degeneracy at vacuum, the derivatives of ρ̄ is not continuous across
the interface between the gas and vacuum. Instead, ρ̄ is a weak solution to (2.1)
such that ∫ +∞

−∞

ρ̄ dx = M, (2.4)

and

ρ̄ = 0, if |ξ | ≥
√

A
B

. (2.5)

Hence, for any finite time T > 0, ρ̄ has compact support. This is the property
of finite speed of propagation for porous medium equation. For the definition of
the weak solution to (2.1), we refer to [1], [2], [3], [23] and [31]. Kamin proved in
[23] that (2.1) admits at most one solution. Here, we addressed the initial data at
t =−1 to avoid the singularity at t = 0. Thus, we have the following lemmas from
(2.2)–(2.5).

Lemma 2.1. If M > 0 is finite, then there is one and only one solution ρ̄(x, t) to
(2.1). Furthermore, the follows hold.
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– ρ̄(x, t) is continuous on R.

– There is a number b =
√

A
B > 0, such that ρ̄(x, t) > 0 if |x| < bt

1
γ+1 ; and

ρ̄(x, t) = 0 if |x| ≥ bt
1

γ+1 .

– ρ̄(x, t) is smooth if |x|< bt
1

γ+1 .

In terms of the explicit form of ρ̄ , it is easy to check the following estimates.

Lemma 2.2. For ρ̄ defined in (2.2) and t > 0, it holds that
|ρ̄| ≤C(1+ t)−

1
γ+1 ,

|(ρ̄γ−1)x| ≤C(1+ t)−
γ

γ+1 , |(ρ̄γ−1)t | ≤C(1+ t)−
2γ

γ+1 ,

|(ρ̄γ)x| ≤C(1+ t)−1, |(ρ̄γ)t | ≤C(1+ t)−
2γ+1
γ+1 ,

(2.6)

and



∫ +∞

−∞

ρ̄
p dx≤C(1+ t)−

p−1
γ+1 , ∀p≥ 1,∫ +∞

−∞

(ρ̄γ−1)2
x dx≤C(1+ t)−

2γ−1
γ+1 ,

∫ +∞

−∞

(ρ̄γ−1)2
t dx≤C(1+ t)−

4γ−1
γ+1 ,∫ +∞

−∞

(ρ̄γ)2
x dx≤C(1+ t)−

2γ+1
γ+1 ,

∫ +∞

−∞

(ρ̄γ)2
t dx≤C(1+ t)−

4γ+1
γ+1 .

(2.7)

3. Invariant Region for weak solutions

In this section, we shall show a proof to Theorem 1.1, which serves as invariant
region theory [6] for L∞ weak entropy solutions to (1.1). It confirms that any L∞

weak entropy solutions to (1.1) will stay inside the physical region

0≤ ρ(x, t)≤C, |m(x, t)| ≤Cρ(x, t),

if the initial data does so.

To proceed, we first recall some results on the entropies available for (1.1).
According to [24], all weak entropies of (1.1) are given by the following formula:

η(ρ,u) =
∫

g(ξ )χ(ξ ;ρ,u) dξ = ρ

∫ 1

−1
g(u+ zρ

θ )(1− z2)λ dz,

q(ρ,m) =
∫

g(ξ )(θξ +(1−θ)u)χ(ξ ;ρ,u) dξ

= ρ

∫ 1

−1
g(u+ zρ

θ )(u+θzρ
θ )(1− z2)λ dz

(3.1)

where θ = γ−1
2 , λ = 3−γ

2(γ−1) , g(ξ ) is any smooth function of ξ , and

χ(ξ ;ρ,u) = (ργ−1− (ξ −u)2)λ
+. (3.2)
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This remarkable formula can be derived from the entropy equation (1.4) uti-
lizing the kinetic formulation or by fundamental solution of linear wave equation.
We remark that when g(ξ ) = 1, η(ρ,m) = ρ; when g(ξ ) = ξ , η(ρ,m) = m; and

when g(ξ ) = 1
2 ξ 2, then η =

m2

2ρ
+

κ

γ−1
ρ

γ is mechanical energy.

As the convexity of entropy function is crucial in the definition of admissible
weak solutions, the characterization of convexity of entropy functions is important.
In our case, the following lemma provides full details in this direction.

Lemma 3.1. (Lions-Perthame-Tadmor, [24]) Weak entropy η(ρ,m) defined in
(3.1) is convex with respect to ρ and m if and only if g(ξ ) is a convex function.

We now present the proof for Theorem 1.1.

3.1. Proof of Theorem 1.1:

Choosing g(ξ ) = gk(ξ ) = ekξ 2
in (3.1), for positive parameter k > 0, the cor-

responding entropy ηk ≥ 0 is clearly convex. By the definition, if (ρ,m) is a L∞

entropy weak solution, we have the following entropy inequality

ηk,t +qk,x +κηk,mm≤ 0, (3.3)

in the sense of distributions. Assuming temporarily that ηk,mm≥ 0, we define

M(T ) = ‖u‖L∞(R×[0,T ]) +θ‖ρθ‖L∞(R×[0,T ]),

which measures the largest possible amplitude of the characteristic speed of the
system (1.1) up to T > 0. It follows, by the L∞ divergence-measure field theory
[5], that for any a > 0 and T > 0,∫ a

−a
ηk(ρ,m)(x,T )dx≤

∫ a+M(T )T

−a−M(T )T
ηk(ρ,m)(x,0)dx, (3.4)

In view of positivity of ηk, one has

(
∫ a

−a
ηk(ρ,m)(x,T )dx)

1
k ≤ (

∫ a+M(T )T

−a−M(T )T
ηk(ρ,m)(x,0)dx)

1
k . (3.5)

Noting that

ηk = ρ

∫ 1

−1
ek(u+zρθ )2

(1− z2)λ dz,

(3.5) implies, for Qa(T ) = {(x, t,z) :−a≤ x≤ a, t = T,−1≤ z≤ 1}, that

‖ρ
1
k e(u+zρθ )2

(1− z2)
λ

k ‖Lk(Qa(T )) ≤ (
∫ a

−a
ηk(ρ,m)(x,T )dx)

1
k

≤ (
∫ a+M(T )T

−a−M(T )T
ηk(ρ,m)(x,0)dx)

1
k .

(3.6)
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Letting k→+∞ and then a→+∞ in (3.6), we have

max{‖(u−ρ
θ )(x,T )‖L∞ ,‖(u+ρ

θ )(x,T )‖L∞}
≤max{‖(u−ρ

θ )(x,0)‖L∞ ,‖(u+ρ
θ )(x,0)‖L∞},

(3.7)

which implies, for any T > 0, that

0≤ ρ(x,T )≤C, 0≤ |u(x,T )| ≤C. (3.8)

where C only depends on the initial data.
It remains to show ηk,mm≥ 0. In fact,

mηk,m = 2km
∫ 1

−1
ek(u+zρθ )2

(u+ zρ
θ )(1− z2)λ dz

= 2km
∞

∑
n=0

∫ 1

−1

kn

n!
(u+ zρ

θ )2n+1(1− z2)λ dz

= 2ρu2
∞

∑
n=0

kn+1

n!

2n+1

∑
j=0

C j
2n+1

∫ 1

−1
u2n− j(zρ

θ ) j(1− z2)λ dz

= 2ρu2
∞

∑
n=0

kn+1

n!

n

∑
j=0

C2 j
2n+1

∫ 1

−1
u2(n− j)(zρ

θ )2 j(1− z2)λ dz

≥ 0.

(3.9)

This concludes the proof of Theorem 1.1.

4. Decay estimates

We now proceed to the decay estimates. To begin, we first prove two important
inequalities which give sharp information on the pressure near vacuum, where the
theory is most lacking.

Lemma 4.1. If 0≤ ρ, ρ̄ ≤C, there are two constants c1 > 0 and c2 > 0 such that
c1(ργ−1 + ρ̄

γ−1)(ρ− ρ̄)2 ≤ ρ
γ+1− ρ̄

γ+1− (γ +1)ρ̄γ(ρ− ρ̄)
≤ c2(ργ−1 + ρ̄

γ−1)(ρ− ρ̄)2

c1(ργ−1 + ρ̄
γ−1)(ρ− ρ̄)2 ≤ (ργ − ρ̄

γ)(ρ− ρ̄)
≤ c2(ργ−1 + ρ̄

γ−1)(ρ− ρ̄)2.

(4.1)

Proof: By Taylor theorem, we have

ρ
γ+1− ρ̄

γ+1− (γ +1)ρ̄γ(ρ− ρ̄)

= γ(γ +1)(ρ− ρ̄)2[
∫ 1

0
(1− s)((1− s)ρ̄ + sρ)γ−1 ds],

(ργ − ρ̄
γ)(ρ− ρ̄)

= (ρ− ρ̄)2
γ[
∫ 1

0
((1− s)ρ̄ + sρ)γ−1 ds].

(4.2)
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Noting that for any 0 < s < 1,

max{((1− s)ρ̄)γ−1,(sρ)γ−1} ≤ ((1− s)ρ̄ + sρ)γ−1 ≤max{ρ̄γ−1,ργ−1}, (4.3)

(4.1) follows easily from (4.2) and (4.3).
We are now ready to derive the decay estimates. Suppose that (ρ,m) is a weak

entropy solution of (1.1) satisfying conditions in Theorem 1.2, then (ρ,m) satisfies
ρt +mx = 0,

mt +(
m2

ρ
+κ(ργ))x =−κm.

(4.4)

Let ρ̄ be the Barenblatt’s solution of porous medium equation carrying the same
total mass M as ρ , and m̄ =−(ρ̄γ)x, then{

w = ρ− ρ̄,

z = m− m̄,
(4.5)

satisfying 
wt + zx = 0

zt +(
m2

ρ
)x + k(ργ − ρ̄

γ)x +κz =−m̄t .
(4.6)

Setting

y =−
∫ x

−∞

w(r, t)dr, (4.7)

we have
yx =−w, z = yt . (4.8)

Thus the equation (4.6) turns into a nonlinear wave equation with source term,
degenerate at vacuum:

ytt +(
m2

ρ
)x +κ(ργ − ρ̄

γ)x +κyt =−m̄t . (4.9)

Multiplying y with (4.9), integrating over [0, t]×(−∞,∞), integrating by parts, one
has

∫ +∞

−∞

(yty+
κ

2
y2) dx+

∫ t

0

∫ +∞

−∞

κ(ργ − ρ̄
γ)(ρ− ρ̄) dxdτ

≤ C +
∫ t

0

∫ +∞

−∞

(y2
t +

m2

ρ
yx) dxdτ + |

∫ t

0

∫ +∞

−∞

m̄ty dxdτ|.
(4.10)

Since ‖yx‖L1 = ‖ρ− ρ̄‖L1 ≤ 2M, we have, from (2.7), the following estimate

|
∫ t

0

∫ +∞

−∞

m̄ty dxdτ|= |
∫ t

0

∫ +∞

−∞

ρ̄
γ

t yx dxdτ|

≤C
∫ t

0
(1+ τ)−1− γ

γ+1 dτ ≤C.

(4.11)

We thus obtain our first estimate
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Lemma 4.2. Let the conditions of Theorem 1.2 be satisfied, it holds∫ +∞

−∞

(yty+
κ

2
y2) dx+

∫ t

0

∫ +∞

−∞

κ(ργ − ρ̄
γ)(ρ− ρ̄) dxdτ

≤ C +
∫ t

0

∫ +∞

−∞

y2
t dxdτ +

∫ t

0

∫ +∞

−∞

m2

ρ
yx dxdτ.

(4.12)

This estimate is very rough in its nature. In order to obtain a definite estimate,
higher order estimate is required. Due to the lack of regularity, we will need to
close the estimate in the next run, which is achieved by entropy inequality.

Choosing g(ξ ) =
1
2

ξ
2 in (3.1), the entropy η takes the form of mechanical

energy

ηe =
m2

2ρ
+

κ

γ−1
ρ

γ ,

and qe the corresponding flux. We read from the entropy inequality that

ηet +qex +κ
m2

ρ
≤ 0, (4.13)

which implies with the help of the divergence measure field theory of [5] that

∫ +∞

−∞

ηe(x, t) dx+κ

∫ t

0

∫ +∞

−∞

m2

ρ
dxdτ ≤C. (4.14)

Since yt = m− m̄, we thus have∫ t

0

∫ +∞

−∞

y2
t dxdτ ≤ 2

∫ t

0

∫ +∞

−∞

m̄2 dxdτ +2
∫ t

0

∫ +∞

−∞

m2 dxdτ

≤C
∫ t

0
(1+ τ)−

2γ+1
γ+1 dτ +C

∫ t

0

∫ +∞

−∞

m2

ρ
dxdτ

≤C.

(4.15)

and

|
∫ t

0

∫ +∞

−∞

m2

ρ
yx dxdτ| ≤C

∫ t

0

∫ +∞

−∞

m2

ρ
dxdτ ≤C. (4.16)

Substituting (4.14), (4.15) and (4.16) into (4.12), we arrive at the following uni-
form estimate

Lemma 4.3. Under the conditions of Theorem 1.2, for any t > 0, it holds that∫ +∞

−∞

(ργ + y2
t +

m2

ρ
+ y2) dx+

∫ t

0

∫ +∞

−∞

(
m2

ρ
+ y2

t ) dxdτ

+
∫ t

0

∫ +∞

−∞

(ργ − ρ̄
γ)(ρ− ρ̄) dxdτ ≤C.

(4.17)
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Remark 4.1. It holds for the Barenblatt solution that∫
∞

0

∫
∞

−∞

ρ̄
γ+1dxdt = ∞. (4.18)

On the other hand, one has

(ργ − ρ̄
γ)(ρ− ρ̄)≥ |ρ− ρ̄|γ+1.

(4.17) thus hints ρ tends to the Barenblatt solution time asymptotically. In fact, a
further study carried in [21] gives a rough decay rates on ‖ρ − ρ̄‖Lγ . We remark
that ηe measures ργ while the last term on the left hand side of (4.17) is in the
form of Lγ+1. The mis-match of the exponent leads to essential difficulty for better
decay rates.

For sharper decay rate, we shall use the entropy inequality again which mea-

sures Lγ+1 norm in density. Choosing g(ξ ) = |ξ |
2γ

γ−1 in (3.1), the entropy reads
as

η̃ = ρ

∫ 1

−1
|u+ zρ

θ |
2γ

γ−1 (1− z2)λ dz. (4.19)

We shall see below that such an entropy function measures Lγ+1 norm of ρ , and
thus matches the double integral term in (4.17).

By Taylor theorem, we have

η̃ = ρ

∫ 1

−1
g(u+ zρ

θ )(1− z2)λ dz

= ρ

∫ 1

−1
[g(zρ

θ )+g′(zρ
θ )u+

1
2

g′′(zρ
θ )u2](1− z2)λ dz

+ρ

∫ 1

−1
[g(u+ zρ

θ )−g(zρ
θ )−g′(zρ

θ )u− 1
2

g′′(zρ
θ )u2](1− z2)λ dz

=: C1ρ
γ+1 +C2m2 +A(ρ,m),

(4.20)

where

A(ρ,m) = ρ

∫ 1

−1
[g(u+ zρ

θ )−g(zρ
θ )−g′(zρ

θ )u− 1
2

g′′(zρ
θ )u2](1− z2)λ dz

= ρu3
∫ 1

−1

∫ 1

0

(1− s)2

2
g(3)(su+ zρ

θ )(1− z2)λ dsdz,

(4.21)
C1 =

∫ 1

−1
|z|

2γ

γ−1 (1− z2)λ dz =
1
2

B(
γ +1

2(γ−1)
,

γ +1
2(γ−1)

),

C2 =
γ(γ +1)
(γ−1)2

∫ 1

−1
|z|

2γ

γ−1 (1− z2)λ dz = 2
γ(γ +1)
(γ−1)2 C1

(4.22)

and B(p,q) is Beta function defined by

B(p,q) =
∫ 1

0
xp−1(1− x)q−1dx.



14 FEIMIN HUANG, RONGHUA PAN, ZHEN WANG

Here we have used the following fact

∫ 1

−1
g′(zρ

θ )u(1− z2)λ dz =
2γ

γ−1
ρ

θ u
∫ 1

−1
|zρ

θ |
2

γ−1 z(1− z2)λ dz = 0. (4.23)

Further advantages of this entropy η̃ are summarized in the following lemma.

Lemma 4.4. For A(ρ,m) defined in (4.21), it holds that

– 1) |A| ≤Cρ|u|3(|u|
3−γ

γ−1 +ρ1−θ ),
– 2) A(ρ,m)≥ 0,
– 3) Amm≥ 0.

Proof: From the formula (4.21) of A(ρ,m), it is obvious that

|A(ρ,m)| ≤Cρ|u|3|g(3)(|u|+ρ
θ )| ≤Cρ|u|3(|u|

3−γ

γ−1 +ρ
1−θ ).

We now prove 2) and 3). In terms of (4.21) and the fact∫ 1

−1
g(3)(zρ

θ )(1− z2)λ dz = 0,

we get

A = ρu3
∫ 1

−1

∫ 1

0

(1− s)2

2
[g(3)(su+ zρ

θ )−g(3)(zρ
θ )](1− z2)λ dsdz

= ρu4
∫ 1

−1

∫ 1

0

∫ 1

0

(1− s1)2s2

2
g(4)(s1s2u+ zρ

θ )(1− z2)λ ds1ds2dz≥ 0
(4.24)

and

Amm = 3A+ρu4
∫ 1

−1

∫ 1

0

s(1− s)2

2
g(4)(su+ zρ

θ )(1− z2)λ dsdz≥ 0 (4.25)

where we have used g(4) ≥ 0. Thus Lemma 4.4 is proved.

Let q̃ be the flux corresponding to entropy η̃ . Define

η∗ = η̃−C1ρ̄
γ+1−C1(γ +1)ρ̄γ(ρ− ρ̄) (4.26)

where ρ̄ is the Barenblatt solution defined in (2.2). The entropy inequality implies

η∗t +(C1ρ̄
γ+1 +C1(γ +1)ρ̄γ(ρ− ρ̄))t + q̃x +2κC2m2 +κAmm≤ 0. (4.27)

Note that

C1(γ +1) = 2κC2 (4.28)
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due to (4.22), and

(ρ̄γ+1)t = (γ +1)ρ̄γ
ρ̄t =−(γ +1)m̄2 +(· · ·)x, (4.29)

where (· · ·)x denotes terms vanish after integrating over R. We thus update (4.27)
by

η∗t +(2κC2ρ̄
γ(ρ− ρ̄))t +2κC2(m− m̄)2+

4κC2m̄(m− m̄)+κAmm+(· · ·)x ≤ 0.
(4.30)

Since ρ− ρ̄ =−yx and

m̄(m− m̄) =−(ρ̄γ)xyt =−(ρ̄γ
x y)t +(ρ̄γ)t(ρ− ρ̄)+(· · ·)x, (4.31)

(4.30) is reduced into

η∗t −2κC2(ρ̄γ
x y)t +2κC2(m− m̄)2 +4κC2(ρ̄γ)t(ρ− ρ̄)

+κAmm+(· · ·)x ≤ 0.
(4.32)

For any small positive constant ε > 0, we define

µ(ε) = 1− 1
2(γ +1)

− ε.

Multiplying (4.32) by (1 + t)µ(ε), integrating the result on R× [0, t] and using
Lemma 4.4, we find

(1+ t)µ(ε)
∫ +∞

−∞

η∗ dx+
∫ t

0

∫ +∞

−∞

(1+ τ)µ(ε)[2κC2(m− m̄)2 +κAmm] dxdτ

≤C +C
∫ t

0

∫ +∞

−∞

(1+ τ)µ(ε)−1
η∗dxdτ +C(1+ t)µ(ε)

∫ +∞

−∞

|ρ̄γ
x ||y| dx

+C
∫ t

0

∫ +∞

−∞

(1+ τ)µ(ε)−1|ρ̄γ
x ||y| dxdτ +C

∫ t

0

∫ +∞

−∞

(1+ τ)µ(ε)|ρ̄γ

t ||ρ− ρ̄| dxdτ

=: C +
4

∑
i=1

Ii.

(4.33)
From (1.5), (4.20), (4.26), (4.1) and Lemma 4.4, we have

η∗ ≤C(ργ − ρ̄
γ)(ρ− ρ̄)+C

m2

ρ
, (4.34)

which, together with Lemma 4.3, implies

I1 ≤C
∫ t

0

∫ +∞

−∞

η∗ dxdτ

≤C
∫ t

0

∫ +∞

−∞

((ργ − ρ̄
γ)(ρ− ρ̄)+

m2

ρ
) dxdτ ≤C.

(4.35)
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By Lemma 4.3 again, we have

I2 ≤C
∫ +∞

−∞

y2dx+C(1+ t)2µ(ε)
∫ +∞

−∞

|ρ̄γ
x |2dx

≤C +C(1+ t)2µ(ε)−2+ 1
γ+1

≤C +C(1+ t)−2ε ≤C.

(4.36)

Similarly, we have

I3 ≤C
∫ t

0

∫ +∞

−∞

(1+ τ)µ(ε)−1|ρ̄γ
x ||y| dxdτ

≤
∫ t

0

∫ +∞

−∞

(1+ τ)−1−ε y2 dxdτ +C
∫ t

0

∫ +∞

−∞

(1+ τ)2µ(ε)−1+ε |ρ̄γ
x |2 dxdτ

≤
∫ t

0
(1+ τ)−1−ε dτ +C

∫ t

0
(1+ τ)2µ(ε)−3+ε+ 1

γ+1 dτ

≤C +C
∫ t

0
(1+ τ)−1−ε dτ

≤C.

It remains to deal with the term I4. From (2.2) and (4.1), we obtain, when
1 < γ < 3,

I4 ≤C
∫ t

0

∫ +∞

−∞

(1+ τ)µ(ε)|ρ̄γ

t ||ρ− ρ̄| dxdτ

≤C
∫ t

0

∫ +∞

−∞

ρ̄
γ−1(ρ− ρ̄)2 dxdτ

+C
∫ t

0
∫ +∞

−∞
(1+ τ)2µ(ε)ρ̄1−γ |ρ̄γ

t |2 dxdτ

≤C +C
∫ t

0
(1+ τ)2µ(ε)−2− γ

γ+1 dτ

≤C +C
∫ t

0
(1+ τ)−1−2ε dτ ≤C.

(4.37)

Thus, in view of (4.33), (4.35), (4.36) and (4.37), we get∫ +∞

−∞

η∗ dx≤C(1+ t)−µ(ε). (4.38)

Therefore we can prove the following lemma,

Lemma 4.5. Under the conditions of Theorem 1.2, it holds for any t > 0 that

‖(m− m̄)(·, t)‖2
L2 +‖(ρ− ρ̄)(·, t)‖γ+1

Lγ+1

+
∫ +∞

−∞

(ργ−1 + ρ̄
γ−1)(ρ− ρ̄)2 dx≤C(1+ t)

1
2(γ+1) +ε−1

,∫ t

0
(1+ τ)1− 1

2(γ+1)−ε‖(m− m̄)(·,τ)‖2
L2 dτ ≤C,

(4.39)

for any positive constant ε .
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Proof. From Lemma 4.1 and the following fact

(ργ−1 + ρ̄
γ−1)(ρ− ρ̄)2 ≥C(ργ − ρ̄

γ)(ρ− ρ̄)≥C|ρ− ρ̄|γ+1,

the estimates on ρ is directly from (4.39). It remains to show the estimate on m.
For this purpose, we have∫ +∞

−∞

(m− m̄)2 dx≤C
∫ +∞

−∞

(m2 + m̄2) dx

≤C
∫ +∞

−∞

η∗ dx+
∫ +∞

−∞

(ρ̄γ)2
x dx

≤C(1+ t)
1

2(γ+1) +ε−1 +C(1+ t)−
2γ+1
γ+1

≤C(1+ t)
1

2(γ+1) +ε−1
,

where we have used the fact that

−2γ +1
γ +1

<
1

2(γ +1)
−1 =− 2γ +1

2(γ +1)
.

The proof of Lemma 4.5 is complete.
Next, we shall use Lemma 4.5 to further obtain an L1 convergence rate on

density, which is based on the following key observation.

Lemma 4.6. If ρ ≥ 0 and ρ̄ ≥ 0 have the same total mass M, then for any t > 0,∫ +∞

−∞

|ρ− ρ̄|(x, t)dx≤ 2
∫

ρ̄>0
|ρ− ρ̄|(x, t)dx. (4.40)

Proof: Because∫ +∞

−∞

ρ(x, t) dx =
∫

ρ̄>0
ρdx+

∫
ρ̄=0

ρdx =
∫ +∞

−∞

ρ̄ dx =
∫

ρ̄>0
ρ̄dx, (4.41)

we have ∫
ρ̄=0

ρ dx =
∫

ρ̄>0
(ρ̄−ρ) dx≤

∫
ρ̄>0
|ρ̄−ρ| dx (4.42)

and ∫ +∞

−∞

|ρ− ρ̄| dx =
∫

ρ̄>0
|ρ− ρ̄| dx+

∫
ρ̄=0

ρ dx≤ 2
∫

ρ̄>0
|ρ− ρ̄| dx. (4.43)

Therefore Lemma 4.6 is complete.

Remark 4.2. Lemma 4.6 discloses the fact that |ρ − ρ̄| on the support of the
Barenblatt solution ρ̄ plays a leading role in the L1 estimate. It is noted that the
support of ρ̄ is a bounded domain for any fixed t > 0, thus it is possible to obtain
an L1 convergence rate from Lp convergence rate.

The decay rates of the L1 distance between ρ and ρ̄ is given in the next lemma.
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Lemma 4.7. Assume the conditions in Theorem 1.2 are satisfied, then

‖ρ− ρ̄‖L1 ≤C(1+ t)−
1

4(γ+1) +ε
, ∀t > 0,

for any ε > 0.

Proof: To take care of the singularity of ρ̄ , we divide the support of ρ̄ into two
parts:

Ω0 = (−
√

A
B

(1+ t)
1

γ+1 +(1+ t)−β ,

√
A
B

(1+ t)
1

γ+1 − (1+ t)−β ),

Ω1 = (−
√

A
B

(1+ t)
1

γ+1 ,−
√

A
B

(1+ t)
1

γ+1 +(1+ t)−β )

∪(
√

A
B

(1+ t)
1

γ+1 − (1+ t)−β ,

√
A
B

(1+ t)
1

γ+1 ),

(4.44)

where β > 1 is a constant. Then {ρ̄ > 0}= Ω0∪Ω1.
With the help of Lemma 4.5 and Lemma 4.6, we now compute

∫
ρ̄>0
|ρ− ρ̄|dx

=
∫

Ω0

|ρ− ρ̄|dx+
∫

Ω1

|ρ− ρ̄|dx

≤ (
∫

Ω0

ρ̄
γ−1|ρ− ρ̄|2dx)

1
2 (
∫

Ω0

ρ̄
1−γ dx)

1
2 +

∫
Ω1

|ρ− ρ̄|dx

≤ C(1+ t)−
1
2 + 1

4(γ+1) +
ε
2 (1+ t)

γ−1
2(γ+1) (

∫
Ω0

(A− Bx2

(1+ t)
2

γ+1
)−1dx)

1
2 +C(1+ t)−β

≤ C(1+ t)−
1

4(γ+1) +
ε
2
√

ln(1+ t)≤C(1+ t)−
1

4(γ+1) +ε
.

(4.45)
Here we have used the fact that

|
∫

Ω0

(A− Bx2

(1+ t)
2

γ+1
)−1dx|

= B2(1+ t)
1

γ+1

∫
ξ=
√

A
B−(1+t)

−β− 1
γ+1

ξ=−
√

A
B +(1+t)

−β− 1
γ+1

(

√
A
B
−ξ )−1(

√
A
B

+ξ )−1 dξ

≤C(1+ t)
1

γ+1 ln(1+ t).

This completes the proof of Lemma 4.7.
Theorem 1.2 follows from Lemmas 4.5 and 4.7.

5. Remarks and discussions

This section is devoted to make some further remarks on two issues. The first
is about an alternative asymptotic profiles of (1.1) constructed by T. Liu. The other
one is about the optimality of the rates in our Theorem 1.2.
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5.1. Liu’s solution

In [26], Liu constructed an interesting solution to (1.1) mimic the Barenblatt’s
solution to (1.2). In this section, we shall discuss Liu’s solution in its one dimen-
sional version and the relation to our studies in this section.

Define φ = p′(ρ) = kγργ−1 be the square of the sound speed, one can rewrite
(1.1) in terms of u and φ :{

φt +uφx +(γ−1)φux = 0
ut +uux + 1

γ−1 φx =−αu.
(5.1)

Consider solutions with finite mass such that

ρ(x, t)≡ 0, for |x| ≥ (
e(t)
b(t)

)
1
2 ,

and set
φ(x, t) = [e(t)−b(t)x2]+, u(x, t) = a(t)x, (5.2)

for some non-negative smooth functions a(t), b(t) and e(t) to be determined. One
thus obtains the following ordinary differential equations for the functions a(t),
b(t) and e(t): 

e′+(γ−1)ae = 0
b′+(γ +1)ab = 0
a′+a2 +αa− 2

γ−1 b = 0.

(5.3)

The first two equations imply that[
ln(

eγ+1

bγ−1 )
]′

= 0, (5.4)

which induces that
eγ+1 = e1bγ−1, (5.5)

for some constant e1 > 0. Therefore, one only needs to solve the equations for a
and b in (5.3). The existence of global solution to (5.3) thus could be done by the
phase-plane diagram analysis on the region

a≥ 0, b≥ 0,

where (0,0) is the only stable equilibrium. Furthermore, b′ < 0 inside the region
while a′ changes sign across the curve

Γ1 : b =
γ−1

2
(a2 +αa).

Indeed, a′ > 0 above Γ1, and a′ < 0 below Γ1. A further conclusion from this anal-
ysis leads to (a,b)(t)→ 0 as t→ ∞.
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The above procedure can be performed for the porous medium equation to
obtain the Barenblatt’s solution with the same ansatz as (5.2):

φ̄ = [ē(t)− b̄(t)x2]+, ū = ā(t)x. (5.6)

Instead of (5.3), for porous medium equation, one has
ē′+(γ−1)āē = 0
b̄′+(γ +1)āb̄ = 0
α ā− 2

γ−1 b̄ = 0,

(5.7)

which is solved explicitly as 
ā(t) = 1

γ+1 t−1

b̄(t) = α(γ−1)
2(γ+1) t−1

ē(t) = e0t−
γ−1
γ+1 ,

(5.8)

if the initial density is chosen as a pointed mass located at the origin. From this
solution, one has

φ̄ = t−
γ−1
γ+1 [e0−

α(γ−1)
γ +1

ξ
2]+, ρ̄ = (

φ̄

kγ
)

1
γ−1 = t−

1
γ+1 [A−Bξ

2]
1

γ−1
+ , (5.9)

where e0 is chosen as kγA, while A, B and ξ were defined in Section 2.

When the initial data for a(t), b(t) and e(t) are chosen such that the initial den-
sity is also a pointed mass at the origin with the same total mass as the Barenblatt’s
defined through (ā, b̄, ē), these two solutions share the very similar behavior. The
main result of [26] is that (a,b,e) approaches to (ā, b̄, ē) time asymptotically with
very fast decay rates, which is restated in the following theorem.

Theorem 5.1. (T.P. Liu [26]) If the solution (ρ,u)(x, t) of (1) constructed in terms
of a, b and e as solution of (5.3) carries the same total mass M as (ρ̄, ū) given by
ā, b̄ and ē, then as t→+∞, it holds

b(t)
a(t)
→ b̄

ā
=

α(γ−1)
2

, (5.10)

and

(a(t),b(t),e(t)) = (ā(t), b̄(t), ē(t))(1+O(1)
ln t
t

), (5.11)

where O(1) is independent of t ≥ 1, but varies with the trajectories of (5.3).

Remark 5.1. Theorem 5.1 is sharper than the original statement in [26], but (5.11)
should be the true statement as it is clearly stated in the proof of [26]. On the other
hand, there seems some misprint in the original statement, as both ā(t) and b̄(t)
decay faster than the remainder term O(1) ln t

t there.
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The detailed information of Liu’s solution, denoted by (ρL,uL)(x, t) given in
Theorem 5.1 indicates that

|(ρL− ρ̄)(x, t)| ≤C[
ln(t +1)

t +1
]

1
γ−1 ρ̄(x, t), (5.12)

which implies that

‖(ρL− ρ̄)(·, t)‖L1 ≤C[
ln(t +1)

t +1
]

1
γ−1 . (5.13)

Now, one easily concludes from (5.13) and Theorem 1.2 that

‖(ρ−ρL)(·, t)‖L1 ≤C(1+ t)−
1

4(γ+1) +ε
, for ∀ε > 0. (5.14)

5.2. Optimality of Decay rates

It is not clear whether the decay rates we obtained in Theorem 1.2 is optimal or
not. At first glance of the rates in (5.12) and (5.13), one may feel that the rates in
Theorem 1.2 are too slow. Indeed, since Liu’s solution is a particular solution with
the same initial data as Barenblatt’s solution, the decay rates obtained in (5.12)-
(5.13) are much faster than those stated in Theorem 1.2.

However, Theorem 1.2 is general in its nature. First of all, the results in Theo-
rem 1.2 are valid for any L∞ entropy weak solutions without any regularity, while
Liu’s solution is Lipschitz almost everywhere and is Hölder at the vacuum bound-
ary. Other reasons include the generic condition of the initial mass distribution in
Theorem 1.2, without specification of the center of the mass. We note that a shift
of the center of the mass could result big error comparing to the specific choice
made in Liu’s solution which matches the Barenblatt’s solution in a perfect way.
For instance, one could easily estimate the L1 decay between Barenblatt’s solution
and a shifted one as follows.

‖(ρ̄(x, t)− ρ̄(x+d, t)‖L1 = O(1)(1+ t)−
1

γ+1

∫ √ A
B

0
(

√
A
B
−ξ )

1
γ−1−1 dξ

= O(1)(1+ t)−
1

γ+1 .

(5.15)

This partially explains why the decay rate of Theorem 1.2 is much slower than
(5.11).

We further remark that one should not expect the rate in (5.15) for general case
in our problem and for porous medium equation. In fact, Carrillo and Toscani [4]
proved that the L1 convergence rate from solutions of porous medium equation
with finite toal mass and finite second moment to Barenblatt solution is about (1+

t)−
1

3γ−1 using the relation between porous medium equation and the Fokker-Planck
equation. This idea is later adopted to the recent work of Ogawa [37] for Keller-
Segel system. This rate is much closer to our rates in Theorem 1.2. The difference
between these two rates could be explained by many reasons. A distinct feature
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here is the lack of the regularity in our L∞ solutions. It is also remarkable that
we did not ask the condition on the boundness of second moment. Furthermore,
[4] is on the difference between solutions of porous medium equation, while we
compare the solutions of compressible Euler equations with damping, which is
hyperboic, with the Barenblatt’s solution. One thus expects slower decay rates in
our case than in [4]. Finally, we note the constraints in our proof for better decay
rates are from the terms of Ii (i = 1,2,3,4) in (4.33)–(4.38). It is clear that the
current rates are very hard to improve with current approach.

On the other hand, we did not find an argument on the optimality of our rates
in Theorem 1.2. Therefore, the optimal decay rate of ‖ρ − ρ̄‖L1 remains as an
interesting open problem.
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J. Differential Equations, 69 (1987), 46–62.

42. D. Serre and L. Xiao, Asymptotic behavior of large weak entropy solutions of the
damped p-system, J. P. Diff. Equa., 10 (1997), 355–368.

43. J. A. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, 1980.
44. H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of p-system

with damping, J. Differential Equations, 174 (2001), 200–236.
45. Y. Zheng, Global smooth solutions to the adiabatic gas dynamics system with dissipa-

tion terms, Chinese Ann. of Math., 17A (1996), 155–162.
46. C. J. Zhu, Convergence of viscosity solutions for the system Of nonlinear elasticity, J.

Math. Anal. Appl., 209 (1997), 585–604.
47. C. J. Zhu, Convergence Rates to Nonlinear Diffusion Waves for Weak Entropy Solu-

tions to p-System with Damping, Sci. China Ser. A, 46 (2003), 562–575.

Feimin Huang
Institute of Applied Mathematics,

AMSS, Academia Sinica
Beijing, China

email:fhuang@amt.ac.cn

and

Ronghua Pan
School of Mathematics

Georgia Institute of Technology
Atlanta, GA 30332, USA

email:panrh@math.gatech.edu

and

Zhen Wang
Institute of Physics and Mathematics

Academia Sinica
Wuhan, China

email:zhenwang@wipm.ac.cn


