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Abstract. We construct global L∞ entropy weak solutions to the initial boundary value prob-

lem for the damped compressible Euler equations on bounded domain with physical boundaries.

Time asymptotically, the density is conjectured to satisfy the porous medium equation and the

momentum obeys to the classical Darcy’s law. Based on entropy principle, we showed that the

physical weak solutions converges to steady states exponentially fast in time. We also proved

that the same is true for the related initial boundary value problems of porous medium equation

and thus justified the validity of Darcy’s law in large time.

∗Email address: panrh@math.gatech.edu

1



1 Introduction

We consider the compressible Euler equation with frictional damping:{
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P (ρ))x = −αρu.
(1.1)

Such a system occurs in the mathematical modelling of compressible flow through a porous

medium. Here ρ, u, and P denote the density, velocity and pressure; the constant α > 0 models

friction. Assuming the flow is a polytropic perfect gas, then P (ρ) = P0ρ
γ, γ > 1, with P0

a positive constant, and γ the adiabatic gas exponent. Without loss of generality, we take

P0 = 1
γ
, α = 1 throughout this paper.

After introducing the momentum m = ρu, we can rewrite (1.1) as follows:
ρt +mx = 0,

mt +
(m2

ρ
+ P (ρ)

)
x

= −m.
(1.2)

The system (1.2) is supplemented by the following initial value and boundary conditions:
ρ(x, 0) = ρ0(x), m(x, 0) = m0(x), 0 < x < 1,

m(0, t) = 0, m(1, t) = 0, t ≥ 0,∫ 1

0

ρ0(x) dx = ρ∗ > 0.

(1.3)

Where, the last condition is imposed to avoid the trivial case, ρ ≡ 0.

For large time, it is conjectured that Darcy’s law is valid and (1.2) is well approximated by

the decoupled system {
ρ̃t = P (ρ̃)xx,

m̃ = −P (ρ̃)x.
(1.4)

Where, the first equation is well-known porous medium equation while the second equation

states Darcy’s law. The initial boundary conditions turn into{
ρ̃(x, 0) = ρ̃0(x), 0 < x < 1,

Px|x=0 = 0, Px|x=1 = 0, t ≥ 0.
(1.5)

When the initial data is small smooth and is away from vacuum, the global existence and

large time behavior of the solutions to (1.2)–(1.3) were established by [16], [17]. However, when

initial data is large or rough, shock will develop in finite time [46], and one has to consider

weak entropy solutions. One of the main difficulties is that the weak solution may contain the
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vacuum state, where the system (1.2) experiences resonance since two family of characteristics

coincide, [24], [25] and [26]. In this paper, we will first construct L∞ weak entropy solution

to (1.2)–(1.3) for physical initial data, and then prove that any L∞ entropy weak solution of

(1.2)–(1.3) converges exponentially to equilibrium state. We then prove that the solutions of

the related diffusion problem (1.4)–(1.5) tend to the same equilibrium state exponentially fast

in time provided that ∫ 1

0

ρ̃0(x)dx =

∫ 1

0

ρ0(x)dx. (1.6)

We thus justified the validity of Darcy’s law in large time.

Due to strong physical background and significant mathematical challenge, system (1.2)

and its time-asymptotic behavior have received considerable attentions. Intensive literatures

are available for Cauchy problem. In this direction, the readers are referred to [31], [13], [14]

and [12] for existence of small smooth solutions; to [27], [4], and [6] for solutions in BV ; to [7]

and [20] for L∞ solutions. For large time behavior of solutions, we refer [13], [14], [33], [34] and

[45] fore small smooth solutions; and we refer [19], [21], [39] and [47] for weak solutions. For

initial boundary value problems, see [16], [28] and [35] for small smooth solutions. There are

also some results on non-isentropic flows, see [15], [17], [18], [29], [36] and [37].

In this paper, we continue the study of [16] and [17] on bounded domain with typical physical

boundary condition (1.3). We will study the global existence and large time behavior of weak

solutions. The existence of entropy weak solutions will be achieved by means of Godunov

scheme [10] and the compensation compactness frameworks established by [7], [9], [22], [23],

[30] and [42]. The proof is in the spirit of [44] and [38]. For the large time behavior, we adopt

the new framework introduced by [19] and [20] based on entropy dissipation. The exponential

decay rates are obtained in this case on bounded domain.

The plan of the rest of this paper is as follows. In section 2, we give some elementary

notions and basic facts that will be used in this paper. The main results will be stated. In

section 3, we construct the approximate solutions and prove the uniform L∞ bound for the

approximate solutions. In section 4, the compensated compactness theory will be applied to

the approximate solutions to show the convergence, up to subsequence, to an entropy weak

solution. The boundary conditions are verified in the sense of trace. Finally, we will prove the

large time behavior of any entropy L∞ weak solution and decay rates in section 5.
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2 Preliminaries and Main results

In this section, we first introduce some basic facts about system (1.2) and the homogeneous

compressible Euler equations. For more details, see [5], and [40]. It is convenient to use vector

form of the the systems. Set

v = (ρ,m)T , f(v) =
(
m,

m2

ρ
+
ργ

γ

)T

, g(v) = (0,−m)T , (2.1)

we rewrite (1.2)–(1.3) as 
vt + f(v)x = g(v),

v(x, 0) = v0(x), x ∈ (0, 1),

m(0, t) = m(1, t) = 0.

(2.2)

Clearly, the Jacobian matrix of flux f is

∇f =

(
0 1

−m2

ρ2 + ργ−1 2m
ρ

)
, (2.3)

which has eigenvalues

λ1 =
m

ρ
− ρθ, λ2 =

m

ρ
+ ρθ, (2.4)

and the so-called Riemann invariants are

w =
m

ρ
+
ρθ

θ
, z =

m

ρ
− ρθ

θ
, (2.5)

where θ = γ−1
2

.

We now give the definition of the weak solutions of (1.2)–(1.3), or equivalently (2.2).

Definition 2.1. For every T > 0, we define a weak solution of (1.2)-(1.3) to be a pair of

bounded measurable functions v(x, t) =
(
ρ(x, t),m(x, t)

)
satisfying the following pair of integral

identities: ∫ T

0

∫ 1

0

(ρψt +mψx) dx dt+

∫
t=0

ρ0ψ dx = 0, (2.6)∫ T

0

∫ 1

0

(
mψt +

(m2

ρ
+ P (ρ)

)
ψx

)
dx dt−

∫ T

0

∫ 1

0

mψ dx dt+

∫
t=0

m0ψ dx = 0, (2.7)

for all ψ ∈ C∞
0 (IT ) satisfying ψ(x, T ) = 0 for 0 ≤ x ≤ 1 and ψ(0, t) = ψ(1, t) = 0 for t ≥ 0,

where IT = (0, 1)× (0, T ), and m
ρ

vanishes when ρ = 0. Moreover, m satisfy the initial boundary

condition (1.3) in the sense of trace, defined in (4.8) below.
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An interesting feature of nonlinear hyperbolic balance laws is that when weak solution is

concerned, the uniqueness is lost. In order to select the physical relevant solutions, one often

imposes entropy admissible conditions. We now define the entropy and entropy flux pairs.

Definition 2.2. A pair of mappings η : R2 → R and q : R2 → R is called an entropy-entropy

flux pair if it satisfies the following equation

∇q = ∇η∇f.

Let η̃(ρ,m/ρ) = η(ρ,m). If η̃(0, u) = 0, then η is called a weak entropy.

Among all entropies, the most natural entropy is the mechanical energy

ηe(ρ,m) =
m2

2ρ
+

ργ

γ(γ − 1)
, (2.8)

which plays a very important role in estimates for entropy dissipation measures. It is easy to

check that ηe is a weak and convex entropy.

Definition 2.3. The weak solution v(x, t) =
(
ρ(x, t),m(x, t)

)
defined in Definition 2.1 is said

to be entropy admissible if for any convex entropy η and associated entropy flux q, the following

entropy inequality holds

ηt + qx + ηmm ≤ 0, (2.9)

in the sense of distribution.

Typically, in order to construct approximate solutions to non-homogeneous hyperbolic sys-

tems, fractional step scheme (operator splitting) is applied. In each time step, one first solves

the associated homogeneous system, then apply the ODE correction ignoring fluxes. In this

paper, we will use many results of the homogeneous compressible Euler equations:
ρt +mx = 0,

mt +
(m2

ρ
+ P (ρ)

)
x

= 0.

or equivalently,

vt + f(v)x = 0. (2.10)

One of the building blocks is the Riemann problem
(2.10), t > 0, x ∈ R,

(ρ,m)|t=0 =

{
(ρl,ml), x < 0,

(ρr,mr), x > 0,

(2.11)

5



where ρl, ρr, ml, and mr are constants satisfying 0 ≤ ρl, ρr, |ml/ρl|, |mr/ρr| <∞. There are

two distinct types of rarefaction waves and shock waves, called elementary waves , which are

labelled 1-rarefaction or 2-rarefaction waves and 1-shock or 2-shock waves, respectively.

Lemma 2.1. There exists a global weak entropy solution of (2.11) which is piecewise smooth

function satisfying

w(x, t) = w(
x

t
) ≤ max{w(ρl,ml), w(ρr,mr)},

z(x, t) = z(
x

t
) ≥ min{z(ρl,ml), z(ρr,mr)},

w(x, t)− z(x, t) ≥ 0.

It follows that the region Λ = {(ρ,m) : w ≤ w0, z ≥ z0, w − z ≥ 0} is an invariant

region for the Riemann problem (2.11). More precisely, if the Riemann data lies in Λ, then the

solution of (2.11) lies in Λ, too.

Lemma 2.2. If {(ρ,m) : a ≤ x ≤ b} ⊂ Λ, then(
1

b− a

∫ b

a

ρ dx,
1

b− a

∫ b

a

m dx

)
∈ Λ. (2.12)

Account to boundary in our problem, the boundary Riemann solver is applied.

Lemma 2.3. For the mixed problem
(2.10), t > 0, x > 0,

(ρ,m)|t=0 = (ρ0,m0), x > 0,

m|x=0 = 0, t ≥ 0,

(2.13)

where (ρ0,m0) are constants, there exists a weak entropy solution in the region
{
(x, t) : x ≥

0, t ≥ 0
}

satisfying the following estimates

w(x, t) ≤ max{w(ρ0,m0),−z(ρ0,m0)},
z(x, t) ≥ z(ρ0,m0), and w(x, t)− z(x, t) ≥ 0.

The term −z(ρ0,m0) is new to the mixed problem because of the shock waves reflecting

off or coming out at the boundary x = 0. Similar to (2.13), we can solve the following mixed

problem in the region
{
(x, t) : x ≤ 1, t ≥ 0

}
:

(2.10), t > 0, x < 1,

(ρ,m)|t=0 = (ρ0,m0), x < 1,

m|x=1 = 0, t ≥ 0,

(2.14)
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The weak entropy solution of (2.14) satisfies the following estimates:

z(x, t) ≥ min{z(ρ0,m0),−w(ρ0,m0)},
w(x, t) ≤ w(ρ0,m0), and w(x, t)− z(x, t) ≥ 0.

Lemma 2.4. Suppose that
(
ρ(x, t),m(x, t)

)
is a solution of (2.11) or (2.13) and or (2.14).

Then, the jump strength of m(x, t) across an elementary wave can be dominated by that of

(ρ(x, t)) across the same elementary wave, i.e.,

across a shock wave : |mr −ml| ≤ C|ρr − ρl|,
across a rarefaction wave : |m−ml| ≤ C|ρ− ρl| ≤ C|ρr − ρl|,

where C depends only on the bounds of ρ and |m|.

Lemma 2.5. For any ε > 0, there exist constants h > 0 and k > 0 such that the solution of

(2.11) in the region
{
(x, t) : |x| < h, 0 ≤ t < k

}
satisfies∫ h

−h

|ρ(x, t)− ρ(x, 0)| dx ≤ Chε, 0 ≤ t ≤ k, (2.15)

where C depends only on the bounds of ρ and |m|, and the mesh lengths h and k satisfy

maxi=1,2 sup |λi(ρ,m)| < h
2k

.

The following two theorems are the main results of this paper.

Theorem 1. Suppose that the initial data (ρ0,m0) satisfy the conditions

0 ≤ ρ0(x) ≤M1, ρ0 6≡ 0, |m0(x)| ≤M2ρ0(x),

for some positive constants Mi(i = 1, 2). Then, for γ > 1, the initial-boundary value problem

(1.2)-(1.3) has a global weak solution (ρ(x, t),m(x, t)), as defined in Definition 2.1, satisfying

the following estimates and entropy condition:

0 ≤ ρ ≤ C, |m| ≤ Cρ a.e. for a constant C > 0, and∫ T

0

∫ 1

0

(
η(ρ,m)ψ̃t + q(ρ,m)ψ̃x

)
dx dt−

∫ T

0

∫ 1

0

ηm(ρ,m)mψ̃ dx dt ≥ 0,
(2.16)

for all weak and convex entropy pairs (η, q) for (1.2)-(1.3) and for all nonnegative smooth

functions ψ̃ ∈ C1
0(IT ).

Theorem 2. Suppose

∫ 1

0

ρ0(x)dx = ρ∗. Let (ρ,m) be any L∞ entropy weak solution of the

initial boundary problem (1.2)-(1.3) defined in Definition 2.1, satisfying the estimates

0 ≤ ρ(x, t) ≤ Λ <∞, |m(x, t)| ≤M1ρ(x, t),
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where M1,Λ are positive constants and let (ρ̃, m̃) be the weak solution of (1.4)–(1.5) with mass

ρ∗ and m̃ = −P (ρ̃)x. Then, there exist constants C, δ > 0 depending on γ, ρ∗,Λ, and initial

data such that ∥∥((ρ− ρ̃), (m− m̃)
)
(·, t)

∥∥2

L2([0,1])
≤ Ce−δt. (2.17)

The proof of Theorem 1 is in the spirit of [44] and [38]. In Section 3, we construct the

approximate solutions vh derived by the Godunov scheme [10]. The L∞ norm of approximate

solutions is established. The compensated compactness framework is then applied to the se-

quence of approximate solutions to obtain a global weak entropy solution in section 4. The

boundary conditions are verified in the sense of trace.

In section 5, we prove Theorem 2, the exponential decay rate of the L2-norm of the difference

between solutions of (1.2)-(1.3) and (1.4)–(1.5). We will see that an easy lemma plays an

important role. It should be pointed out that the key approach in [13—21] is to compare the

solution of (1.2)-(1.3) with the similarity solution of (1.4) via energy estimates. Unfortunately,

the exponential decay rate cannot be achieved by this approach, due to the boundary effects.

Instead of comparing two solutions directly, we first show that the large time asymptotic state

for both solutions is a constant state (ρ∗, 0) and both solutions tend to the constant state

exponentially fast. Hence by the triangular inequality we can see that the solution of (1.2)-

(1.3) tends to that of (1.4)–(1.5) exponentially fast as time goes to infinity.

3 Approximate solutions

The approximate solutions will be constructed by Godunov scheme [10] with operator splitting.

We choose the space mesh length h = 1
N

, where N is a positive integer. The time mesh length

k = k(h) will be chosen later so that the Courant-Friedrich-Levy condition

max
i=1,2

(sup |λi(v)|) <
h

2k
(3.1)

holds for a given T > 0. We partition the interval [0, 1] into cells, with the jth cell centered

at xj = jh, j = 1, · · · , N − 1. Set x0 = 0 and xN = 1. We now use the Godunov scheme to

construct a sequence of approximate solutions of (2.2). Namely, we solve the Riemann problems

(2.11) in the region R1
j ≡

{
(x, t) : xj− 1

2
≤ x < xj+ 1

2
, 0 ≤ t < k

}
:

∂

∂t
vh +

∂

∂x
f(vh) = 0,

vh|t=0 =

{
(ρ0

j ,m
0
j), x < xj,

(ρ0
j+1,m

0
j+1), x > xj, j = 1, · · · , N − 1,
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where

ρ0
j =

1

h

∫ xj

xj−1

ρ0(x) dx, m0
j =

1

h

∫ xj

xj−1

m0(x) dx, for j = 1, · · · , N.

We also solve the mixed problems (2.13) and (2.14) with (ρ0
1,m

0
1) and (ρ0

N ,m
0
N), in regions{

(x, t) : 0 ≤ x < x 1
2
, 0 ≤ t < k

}
and

{
(x, t) : xN− 1

2
≤ x < 1, 0 ≤ t < k

}
, respectively. Then

we set

vh(x, t) = vh(x, t) + V (vh(x, t))t, 0 ≤ x ≤ 1, 0 ≤ t < k, (3.2)

where V (v) =
(
V1(v), V2(v)

)
≡ (0,−m), and

v1
j =

1

h

∫ xj

xj−1

vh(x, t1 − 0) dx, j = 1, · · · , N. (3.3)

Suppose that we have defined approximate solutions vh(x, t) for 0 ≤ t < ti. We then define

vh(x, t) = vh(x, t) + V (vh(x, t))(t− ti), ti ≤ t < ti+1, (3.4)

where vh(x, t) are piecewise smooth functions defined as solutions of the Riemann problems in

the region Ri
j

{
(x, t) : xj− 1

2
≤ x < xj+ 1

2
, ti ≤ t < ti+1

}


(2.10),

vh(x, t)|t=ti =

{
vi

j, x < xj,

vi
j+1, x > xj, j = 1, · · · , N − 1,

(3.5)

and as solutions of mixed problems in the two regions Ri
0 and Ri

N :

Ri
0 = {(x, t) : 0 ≤ x < x 1

2
, ti ≤ t < ti+1},

(2.10), x > 0, t > ti,

vh(x, t)|t=ti = vi
1, x > 0,

mh|x=0 = 0.

Ri
N = {(x, t) : xN− 1

2
≤ x < 1, ti ≤ t < ti+1},

(2.10), x < 1, t > ti,

vh(x, t)|t=ti = vi
1, x < 1,

mh|x=1 = 0.

(3.5′)

Next, we set

vi+1
j =

1

h

∫ xj

xj−1

vh(x, ti+1 − 0)dx, 1 ≤ j ≤ N. (3.6)
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Therefore, inductively, the approximate solutions vh = (ρh,mh) ≡ (ρ
h
,mh) are well-defined,

since ρ
h
≥ 0. We summarize the above process as follows:

vi+1 = Ah ◦R ◦ Ek(·, vi), (3.7)

where Ah is the cell-averaging operator (3.6), Ek(x, v
i) is the Riemann solver (3.5) (or boundary

Riemann solver (3.5’)), and R is the reconstruction step (3.4).

For ti ≤ t < ti+1, we set

wh(x, t) = wh(x, t)−
wh(x, t) + zh(x, t)

2
(t− ti), (3.8)

zh(x, t) = zh(x, t)−
wh(x, t) + zh(x, t)

2
(t− ti), (3.9)

where wh and zh are Riemann invariants corresponding to the Riemann solutions vh.

With the help of wh(x, t) and zh(x, t) defined by (3.8) and (3.9), we prove the following

uniform bound for the approximate solutions.

Theorem 3.1. Suppose that the initial data (ρ0,m0) satisfy the following conditions:

0 ≤ ρ0(x) ≤M1, ρ0(x) 6≡ 0, |m0(x)| ≤M2ρ0(x). (3.10)

Then, the approximate solutions (ρh,mh) derived by the Godunov scheme are uniformly bounded

in the region IT ≡
{
(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T

}
for any T > 0; that is, there is a constant

C > 0 independent of t such that

0 ≤ ρh(x, t) ≤ C, |mh(x, t)| ≤ Cρh(x, t). (3.12)

Proof. Assume that 0 < k < 1. For ti ≤ t < ti+1 (i ≥ 0 integers), the Riemann invariant

properties imply that

wh(x, t) = wh(x, t)
(
1− t− ti

2

)
− zh(x, t)

t− ti
2

≤ sup
x
wh(x, ti + 0)

(
1− t− ti

2

)
− inf

x
zh(x, ti + 0)

t− ti
2

,

zh(x, t) = zh(x, t)
(
1− t− ti

2

)
− wh(x, t)

2
(t− ti)

≥ inf
x
zh(x, ti + 0)

(
1− t− ti

2

)
− sup

x
wh(x, ti + 0)

t− ti
2

.

In particular, we obtain

sup
x
wh(x, ti+1 − 0) ≤ sup

x
wh(x, ti + 0)

(
1− k

2

)
− inf

x
zh(x, ti + 0)

k

2
,

inf
x
zh(x, ti+1 − 0) ≥ inf

x
zh(x, ti + 0)

(
1− k

2

)
− sup

x
wh(x, ti + 0)

k

2
.
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Let αi = max
{

supxwh(x, ti + 0), − infx zh(x, ti + 0)
}
. Then

max
{

sup
x
wh(x, ti+1 − 0), − inf

x
zh(x, ti+1 − 0)

}
≤ αi. (3.13)

By (3.6) we know that

sup
x
wh(x, ti+1 + 0) ≤ sup

x
wh(x, ti+1 − 0), inf

x
zh(x, ti+1 + 0) ≤ inf

x
zh(x, ti+1 − 0). (3.14)

Therefore

αi+1 ≤ αi, and αi ≤ α0, 0 ≤ i ≤ n, (3.15)

where α0 = max
{

supxw0(x), − infx z0(x)
}

. Then,

wh(x, t) ≤ α0, zh(x, t) ≥ −α0, and

wh(x, t)− zh(x, t) ≥ 0.

Then there is a constant C > 0 independent of h, k and t such that

0 ≤ ρh(x, t) ≤ C, |mh(x, t)| ≤ Cρh(x, t).

This completes the proof the Theorem 3.1.

Now, we can choose the time mesh length k = k(h). Let

λ = max
i=1,2

{
sup

0≤ρ≤C, |m|≤Cρ

|λi(ρ,m)|
}
,

then we take

k =
T

n
, where n = max

{[
4λT

h

]
+ 1,

[
T

2

]
+ 1

}
. (3.16)

For this k, both the CFL condition and 0 < k < 1 hold.

4 Global existence of weak solutions

In this section, we will show that the approximate solutions, constructed in last section, admit

a convergent subsequence whose limit is a weak entropy solution of problem (1.2)–(1.3). The

convergence is achieved by the compensated compactness, the boundary conditions are verified

in the sense of trace.

With the uniform L∞ estimates given in Theorem 3.1, and the specific structure of system

(1.2), now it is standard to apply the compensated compactness framework ([7], [9], [22], [23]) to
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the approximate solution {vh}, to conclude that there exists a convergent subsequence {vhj
}∞j=1

such that hj → 0 as j →∞ and(
ρhj

(x, t),mhj
(x, t)

)
→
(
ρ(x, t),m(x, t)

)
a.e. (4.1)

Furhtermore, such a limit (ρ,m)(x, t) satisfies (2.6) and (2.7) for any test function ψ(x, t) ∈
C∞

0 (IT ) for any T > 0. Also, the entropy inequality holds in the sense of distribution. Clearly,

there is a constant C > 0 such that

0 ≤ ρ(x, t) ≤ C, |m(x, t)| ≤ Cρ(x, t) a.e. (4.2)

Now we turn to the initial and boundary conditions of weak solutions. First, we need

to determine the traces of weak solutions whose exact meaning will be stated below. Let

v = (ρ,m) be a weak solution of (1.2) obtained in (4.1). We introduce the generalized function

A : C1
0(R2) −→ R2 as follows: for ψ ∈ C1

0(R2),

A(ψ) = −
∫ T

0

∫ 1

0

(
vψt + f(v)ψx + g(v)ψ

)
dxdt. (4.3)

We take smooth ζ0(t), ζT (t), ξ0(x), ξ1(x) with

ζ0(0) = 1, ζ0(T ) = 0; ζT (0) = 0, ζT (T ) = 1;

ξ0(0) = 1, ξ0(1) = 0; ξ1(0) = 0, ξ1(1) = 1.
(4.4)

For any χ(x), we define the generalized functions:

v?(·, 0)(χ) = A(χ · ζ0)− χ(0)A(ξ0 · ζ0)− χ(1)A(ξ1 · ζ0),
v?(·, T )(χ) = −A(χ · ζT ) + χ(0)A(ξ0 · ζT ) + χ(1)A(ξ1 · ζT ),

f ?(v)(0, ·)(χ) = A(ξ0 · χ),

f ?(v)(1, ·)(χ) = −A(ξ1 · χ),

(4.5)

where (χ · ζ0)(x, t) = χ(x)ζ0(t) and so on mean the tensor product.

Then we can define the trace of v along the segments (0, 1)×{0} and (0, 1)×{T}, and the

trace of f(v) along the segments {0} × (0, T ) and {1} × (0, T ) respectively as v?(·, 0), v?(·, T ),

f ?(v)(0, ·) and f ?(v)(1, ·). Similarly, for any t ∈ (0, T ), we can also define v?(·, t) as the trace

of v along the segment (0, 1) × {t}. For any x ∈ (0, 1), define f ?(v)(x, ·) as the trace of f(v)

along the segment {x} × (0, T ).

Similar to [11], we have

Lemma 4.1. Let v satisfy (1.2) in distributional sense, then,

v?(·, 0)|(0,1), v?(·, T )|(0,1) ∈ L∞loc(0, 1);

f ?(v)(0, ·)|(0,T ), f ?(v)(1, ·)|(0,T ) ∈ L∞loc(0, T ),
(4.6)
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and for any ψ ∈ C1
0(R2),∫ T

0

∫ 1

0

(
vψt + f(v)ψx + g(v)ψ

)
dxdt

=

∫ 1

0

v?(x, T )ψ(x, T )dx−
∫ 1

0

v?(x, 0)ψ(x, 0)dx

+

∫ T

0

f ?(v)(1, t)ψ(1, t)dt−
∫ T

0

f ?(v)(0, t)ψ(0, t)dt.

(4.7)

Lemma 4.2. Let vhj
= (ρhj

,mhj
) be the convergent sequence of approximate solutions of (1.2)-

(1.3) constructed in section 3 and v = (ρ,m) is the limit function obtained in (4.1). Then v(x, t)

satisfies the initial-boundary conditions:

m?(0, t) = m?(1, t) = 0, t ∈ (0, T ); (4.8)

v?(x, 0) = v0(x), x ∈ (0, 1). (4.9)

Proof. From (2.6)–(2.7), it is easy to see, for any ψ ∈ C1
0(R2), that

lim
j→+∞

[ ∫ T

0

∫ 1

0

(vhj
ψt + f(vhj

)ψx + g(vhj
)ψ)dxdt+

∫
t=0

vhj
ψdx−

∫
t=T

vhj
ψdx

]
= 0, (4.10)

which implies∫ T

0

∫ 1

0

(vψt + f(v)ψx + g(v)ψ)dxdt+ lim
j→+∞

[

∫
t=0

vhj
ψdx−

∫
t=T

vhj
ψdx] = 0. (4.11)

Therefore, (4.7) and (4.11) give

lim
j→+∞

(

∫
t=T

vhj
ψdx−

∫
t=0

vhj
ψdx)

=

∫ 1

0

v?(x, T )ψ(x, T )dx−
∫ 1

0

v?(x, 0)ψ(x, 0)dx

+

∫ T

0

f ?(v)(1, t)ψ(1, t)dt−
∫ T

0

f ?(v)(0, t)ψ(0, t)dt.

(4.12)

The first component of (4.12) reads∫ 1

0

ρ?(x, T )ψ(x, T )dx−
∫ 1

0

ρ?(x, 0)ψ(x, 0)dx+

∫ T

0

m?(1, t)ψ(1, t)dt

−
∫ T

0

m?(0, t)ψ(0, t)dt− (

∫
t=T

ρψdx−
∫

t=0

ρψ dx) = 0.

(4.13)
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Taking ψ(x, t) = ζ(x)χ(t) ∈ C1
0(R2) with ζ, χ ∈ C1

0(R), and χ(0) = 1, χ(T ) = 0, ζ(1) =

ζ(0) = 0 in (4.13), we get ∫ 1

0

ρ?(x, 0)ζ(x)dx =

∫ 1

0

ρ0(x)ζ(x)dx,

which implies ρ?(x, 0) = ρ0(x) on (0, 1).

Taking ψ(x, t) = ζ(x)χ(t) ∈ C1
0(R2) with ζ, χ ∈ C1

0(R), and χ(0) = χ(T ) = 0, ζ(1) = 0,

ζ(0) = 1 in (4.13), we get ∫ T

0

m?(0, t)χ(t)dx = 0.

Thus m?(0, t) = 0 on (0, T ). It is similar to show that m?(1, t) = 0 on (0, T ). Using the second

component of (4.12), it is easy to show m?(x, 0) = m0(x) on (0, 1). This completes the proof

of Lemma 4.2.

Collecting all results obtained above, we thus conclude the proof of Theorem 1. However,

we remark that Lemma 4.2 might not apply to all weak solutions which satisfies (2.6)-(2.7).

However, in the same spirit, one could show that the weak solutions obtained as vanishing

viscosity limit with the same boundary condition (1.3) verifies (4.8) and (4.9). This explains

the last line in Definition 2.1.

5 Large Time Behavior of Weak Solution

In this section, we investigate the large time asymptotic behavior of any entropy weak solution

for the initial boundary value problem (1.2)-(1.3), including the one obtained in section 4. In

deed, we have

Theorem 5.1. Let (ρ,m) be any L∞ entropy weak solution of the initial boundary problem

(1.2)-(1.3), defined in Definition 2.1, satisfying

∫ 1

0

ρ0(x)dx = ρ∗ and

0 ≤ ρ(x, t) ≤ Λ <∞, |m(x, t)| ≤M1ρ(x, t), (5.1)

where M1,Λ are positive constants. Then, there exist constants C, δ > 0 depending on γ, ρ∗,Λ,

and initial data such that ∥∥(ρ− ρ∗, m
)
(·, t)

∥∥2

L2([0,1])
≤ Ce−δt. (5.2)
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Due to dissipation of momentum equation and the boundary condition, the kinetic energy

is expected to vanish as time tends to infinity while the potential energy will converge to a

constant. Furthermore, it is easy to see∫ 1

0

ρ(x, t)dx =

∫ 1

0

ρ0(x)dx = ρ∗, (5.3)

due to conservation law of total mass. This suggests that the asymptotic state of (ρ,m)(x, t)

should be (ρ∗, 0).

We now turn to prove Theorem 5.1. First of all, we give a lemma which will play an

important role in controlling the singularity near vacuum.

Lemma 5.2. Let 0 ≤ ρ ≤ Λ <∞. There is a positive constant C1 such that[
P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗)

]
≤ C1

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗). (5.4)

Proof. Consider

Γ(ρ) =
γ

ρ∗
(P (ρ)− P (ρ∗))(ρ− ρ∗)−

[
P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗)

]
. (5.5)

Clearly, Γ(ρ) is continuous for ρ ≥ 0. Since

Γ(0) = P (ρ∗) > 0,

there exists d ∈ (0, ρ∗) such that

Γ(ρ) >
1

2
P (ρ∗) > 0, for ρ ∈ [0, d]. (5.6)

For ρ > d > 0, we can see that

P ′(d)(ρ− ρ∗)
2 ≤

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗), (5.7)

and

P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗) ≤


P ′′(d)

2
(ρ− ρ∗)

2, 1 < γ ≤ 2,

P ′′(Λ)

2
(ρ− ρ∗)

2, γ > 2.

(5.8)

Choosing

C1 = max{ γ
ρ∗
,
P ′′(d)

2P ′(d)
,
P (Λ)

2P ′(d)
}, (5.9)
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we thus have

P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗) ≤ C1

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗). (5.10).

This completes the proof of Lemma 5.2.

We then set

w = ρ− ρ∗, z = m, (5.11)

which satisfy 
wt + zx = 0

zt +
(m2

ρ

)
x

+
[
P (ρ)− P (ρ∗)

]
x

+ z = 0,
(5.12)

and ∫ 1

0

w(x, t)dx = 0. (5.13)

Define

y = −
∫ x

0

w(σ, t)dσ, (5.14)

which implies that

yx = −w = ρ∗ − ρ, yt = z. (5.15)

Since ∫ 1

0

ρ(x, t)dx =

∫ 1

0

ρ0(x)dx = ρ∗,

we have

y(0) = y(1) = 0. (5.16)

Therefore the second equation of (5.12) turns into

ytt +
(m2

ρ

)
x

+
[
P (ρ)− P (ρ∗)

]
x

+ yt = 0. (5.17)

Multiplying y with (5.17) and integrating over [0, 1], we have

d

dt

∫ 1

0

(
yty +

1

2
y2
)
dx−

∫ 1

0

y2
t dx+

∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx =

∫ 1

0

m2

ρ
yxdx. (5.18)

Since ρ, u = m/ρ,m = yt ∈ L∞[0, 1], we get

d

dt

∫ 1

0

(
yty+

1

2
y2
)
dx−

∫ 1

0

y2
t dx+

∫ 1

0

[
P (ρ)−P (ρ∗)

]
(ρ−ρ∗)dx =

∫ 1

0

ρ∗
ρ
y2

t dx−
∫ 1

0

y2
t dx, (5.19)
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i.e.
d

dt

∫ 1

0

(
yty +

1

2
y2
)
dx+

∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx =

∫ 1

0

y2
t

ρ∗
ρ
dx. (5.20)

In order to deal with the nonlinearity, we now use the entropy inequality, rather than the

usual energy method. Let

ηe =
m2

2ρ
+
P (ρ)

γ − 1
, qe =

m3

2ρ2
+
ργ−1m

γ − 1

be the mechanical energy and related flux. We define

η∗ = ηe −
1

γ − 1
P ′(ρ∗)(ρ− ρ∗)−

1

γ − 1
P (ρ∗). (5.21)

Thus, by the definition of weak entropy solution, the following entropy inequality holds in

the sense of distribution:

η∗t +
1

γ − 1
[P ′(ρ∗)(ρ− ρ∗)]t + qex +

m2

ρ
≤ 0. (5.22)

Since ρ∗ is a constant, we get

η∗t +
P ′(ρ∗)

γ − 1
(ρ− ρ∗)t + qex +

m2

ρ
≤ 0. (5.23)

By the conservation of mass and theory of divergence-measure fields [3] , we have

d

dt

∫ 1

0

η∗dx+

∫ 1

0

m2

ρ
dx ≤ 0,

i.e.,
d

dt

∫ 1

0

η∗dx+

∫ 1

0

y2
t

ρ
dx ≤ 0. (5.24)

Choosing K = max{2, 2Λ + ρ∗}, we add (5.20) to (5.24)×K,

d

dt

∫ 1

0

(
Kη∗ + yyt +

1

2
y2
)
dx+

∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx+

∫ 1

0

K − ρ∗
ρ

y2
t dx ≤ 0, (5.25)

Using the expression of η∗ we get

d

dt

∫ 1

0

(K
2ρ
y2

t + yyt +
1

2
y2 +

K

γ − 1

[
P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗)

])
dx

+

∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx+

∫ 1

0

K − ρ∗
ρ

y2
t dx ≤ 0.

(5.26)

Clearly, Lemma 5.2 implies
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∫ 1

0

K

γ − 1

[
P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗)

]
dx ≤ C1K

γ − 1

∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx. (5.27)

On the other hand, since P is a convex function, the Lemma 4.1 of [20] and Poincaré’s

inequality imply that there are positive constants C2 and C3 such that∫ 1

0

(K
2ρ
y2

t + yyt +
1

2
y2
)
dx ≤

∫ 1

0

(K
2ρ
y2

t +
1

2
y2

t + y2
)
dx

≤ C2

∫ 1

0

K − ρ∗
ρ

y2
t dx+

∫ 1

0

y2dx

≤ C2

∫ 1

0

K − ρ∗
ρ

y2
t dx+

∫ 1

0

y2
xdx

≤ C2

∫ 1

0

K − ρ∗
ρ

y2
t dx+ C3

∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx.

(5.28)

Therefore, for C4 = max{C2, C3}, it holds∫ 1

0

(
Kη∗ + yyt +

1

2
y2
)
dx ≤ C4

(∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx+

∫ 1

0

K − ρ∗
ρ

y2
t dx
)
. (5.29)

Therefore, from (5.26)–(5.29), we conclude that there is a positive constant C5 such that

d

dt

∫ 1

0

(
Kη∗ + yyt +

1

2
y2
)
dx+ C5

∫ 1

0

(
Kη∗ + yyt +

1

2
y2
)
dx ≤ 0. (5.30)

Furthermore, since K > 2Λ ≥ 2ρ, we know that

Kη∗ + yyt +
1

2
y2

≥ 2y2
t + yyt +

1

2
y2 +

K

γ − 1

[
P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗)

]
≥ y2

t + C6(ρ− ρ∗)
2,

(5.31)

where C6 is a positive constant. Hence, (5.30) implies that∫ 1

0

(
Kη∗ + yyt +

1

2
y2
)
dx ≤ C7 exp{−C5t}, (5.32)

and ∫ 1

0

y2
t + (ρ− ρ∗)

2dx ≤ C8 exp{−C5t}. (5.33)

This completes the proof of Theorem 5.1.
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As indicated in introduction, we also expect that (1.2)–(1.3) is captured by (1.4)–(1.5) time

asymptotically if ∫ 1

0

ρ̃0(x) dx = ρ∗. (5.34)

In view of Theorem 5.1, we will show that the large time asymptotic state of (1.4)–(1.5) is also

the constant state (ρ∗, 0). Then by applying the triangular inequality we can prove Theorem

2.

Consider 
ρ̃t − P̃xx = 0,

ρ̃(x, 0) = ρ̃0(x), 0 ≤ x ≤ 1,

P̃x(0, t) = P̃x(1, t) = 0, t ≥ 0,

(5.35)

where P̃ = P (ρ̃), and P̃ ′
0(0) = P̃ ′

0(1) = 0, for P̃0(x) = P (ρ̃0(x)). The initial data ρ̃0 satisfies

0 ≤ ρ̃0(x) ≤ Λ, and

∫ 1

0

ρ̃0(x)dx =

∫ 1

0

ρ0(x)dx = ρ∗. (5.36)

The global existence and large time behavior of weak solutions of (5.35) has been established in

[1], see also [43]. Here, we give a proof in different version including the decay of momentum.

Theorem 5.3. Let ρ̃0(x) satisfy (5.36). Then for the global weak solution ρ̃(x, t) of (5.35) and

m̃ = −P̃x, there exist positive constants c1 and δ1 > 0 such that∫ 1

0

(
(ρ̃− ρ∗)

2 + m̃2
)
dx ≤ c1 exp{−δ1t}, as t→ +∞. (5.37)

Proof. First, we note that 0 ≤ ρ̃(x, t) ≤ Λ due to the comparison principle [43]. Second, there

is a T > 0 such that ρ(x, t) > 0 is a classical solution for t > T , see [1]. Then, for t > T , we

consider the equation

(ρ̃− ρ∗)t = (P̃ − P∗)xx, (5.38)

which is equivalent to (5.35)1, where P̃ = P (ρ̃), P∗ = P (ρ∗). Let

ψ(x, t) = ρ̃(x, t)− ρ∗, (5.39)

and

φ =

∫ x

0

ψ(r, t) dr, (5.40)

then

φx = ψ = ρ̃− ρ∗. (5.41)

19



Due to the conservation of mass we have

φ(0) = φ(1) = 0. (5.42)

Integrating (5.38) over [0, x] and use the boundary condition we get

φt = (P̃ − P∗)x. (5.43)

Multiplying (5.43) by φ and integrating over [0, 1] we get

d

dt

∫ 1

0

1

2
φ2dx+

∫ 1

0

(P̃ − P∗)(ρ̃− ρ∗)dx = 0. (5.44)

Multiplying (5.38) by ρ̃− ρ∗ and integrating over [0, 1] we get

d

dt

∫ 1

0

1

2
(ρ̃− ρ∗)

2dx+

∫ 1

0

(P̃ − P∗)x(ρ̃− ρ∗)xdx = 0. (5.45)

Since (P̃ − P∗)x = P̃x = P ′(ρ̃)ρ̃x = P ′(ρ̃)(ρ̃− ρ∗)x, one has

d

dt

∫ 1

0

1

2
(ρ̃− ρ∗)

2dx+

∫ 1

0

P ′(ρ̃)(ρ̃− ρ∗)x(ρ̃− ρ∗)xdx = 0,

i.e.
d

dt

∫ 1

0

1

2
(ρ̃− ρ∗)

2dx+

∫ 1

0

P ′(ρ̃)[(ρ̃− ρ∗)x]
2dx = 0. (5.46)

Multiplying (5.38) by (P̃ − P∗) and integrating over [0, 1] we get∫ 1

0

[P (ρ̃)− P (ρ∗)](ρ̃− ρ∗)tdx+

∫ 1

0

[(P̃ − P∗)x]
2dx = 0. (5.47)

Now, we define

F (ρ̃− ρ∗) =

∫ ρ̃−ρ∗

0

[P (ρ∗ + ξ)− P (ρ∗)]dξ, (5.48)

then we have

Ft = [P (ρ̃)− P (ρ∗)](ρ̃− ρ∗)t.

So (5.47) turns out to be

d

dt

∫ 1

0

Fdx+

∫ 1

0

[(P̃ − P∗)x]
2dx = 0. (5.49)

From the definition of F , we know

F =

∫ ρ̃−ρ∗

0

P ′(ζ)ξdξ,

20



where ζ is between ρ̃ and ρ∗. Since 0 ≤ ρ̃, ρ∗ ≤ Λ we know that

0 ≤ F ≤ P ′(Λ)

2
(ρ̃− ρ∗)

2. (5.50)

Since P (ρ̃) = ρ̃γ/γ, then ρ̃ = (γP̃ )
1
γ , and so ρ̃t = (γP̃ )

1
γ
−1P̃t. Then we consider the equation

of P̃

P̃t = (γP̃ )1− 1
γ P̃xx,

i.e.

(P̃ − P∗)t = (γP̃ )1− 1
γ (P̃ − P∗)xx. (5.51)

Multiplying (5.51) by (P̃ − P∗)xx and integrating over [0, 1] we get

d

dt

∫ 1

0

1

2
[(P̃ − P∗)x]

2dx+

∫ 1

0

(γP̃ )1− 1
γ [(P̃ − P∗)xx]

2dx = 0. (5.52)

Doubling (5.45), (5.46), and (5.52), adding the results to (5.49), and notice that P ′(ρ̃) ≥ 0

and (γP̃ )1− 1
γ ≥ 0, we arrive at

d

dt

∫ 1

0

{
φ2+(ρ̃−ρ∗)2+F+[(P̃−P∗)x]

2
}
dx+

∫ 1

0

{
(P̃−P∗)(ρ̃−ρ∗)+[(P̃−P∗)x]

2
}
dx ≤ 0, (5.53)

where we have thrown some non-negative terms (in the second part of the left hand side) away.

Since φx = ρ̃− ρ∗, by Poincaré’s inequality and (5.50) we obtain∫ 1

0

{
φ2+(ρ̃−ρ∗)2+F+[(P̃−P∗)x]

2
}
dx ≤

∫ 1

0

{(
2+

P ′(Λ)

2

)
(ρ̃−ρ∗)2+[(P̃−P∗)x]

2
}
dx. (5.54)

Now, from Lemma 4.1 in [20], we know that

C9(ρ̃− ρ∗)
2 ≤ (P̃ − P∗)(ρ̃− ρ∗), (5.55)

where C9 is a constant. Combining (5.54) and (5.55) we obtain∫ 1

0

{
φ2 +(ρ̃−ρ∗)2 +F +[(P̃ −P∗)x]

2
}
dx ≤

∫ 1

0

{
C10(P̃ −P∗)(ρ̃−ρ∗)+[(P̃ −P∗)x]

2
}
dx, (5.56)

where C10 =
(
2 + P ′(Λ)

2

)
/C9. Therefore, (5.56) implies that∫ 1

0

{
φ2 +(ρ̃−ρ∗)2 +F +[(P̃ −P∗)x]

2
}
dx ≤ C11

∫ 1

0

{
(P̃ −P∗)(ρ̃−ρ∗)+[(P̃ −P∗)x]

2
}
dx, (5.57)

where C11 = max{C10, 1}. Combining (5.53) and (5.57) we get

d

dt

∫ 1

0

{
φ2 +(ρ̃−ρ∗)2 +F +[(P̃ −P∗)x]

2
}
dx+

1

C11

∫ 1

0

{
φ2 +(ρ̃−ρ∗)2 +F +[(P̃ −P∗)x]

2
}
dx ≤ 0,
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which implies that∫ 1

0

{
φ2 + (ρ̃− ρ∗)

2 + F + [(P̃ − P∗)x]
2
}
dx ≤ C12 exp

{
− t

C11

}
, (5.58)

where C12 is a constant depending on the initial data.

Since F ≥ 0, we obtain∫ 1

0

{
φ2 + (ρ̃− ρ∗)

2 + [(P̃ − P∗)x]
2
}
dx ≤ C12 exp

{
− t

C11

}
, (5.59)

i.e. ∫ 1

0

{
φ2 + (ρ̃− ρ∗)

2 + m̃2
}
dx ≤ C12 exp

{
− t

C11

}
. (5.60)

This completes the proof of Theorem 5.3.

Theorem 2 is a immediate consequence of Theorem 5.1 and Theorem 5.3.

Acknowledgment: The first author is partially supported by NSF grant through DMS-

0505515.

References

[1] N. Alikakos and R. Rostamian, Large time behavior of solutions of Neumann boundary

value problem for the porous medium equation. Indiana Univ. Math. J., 30(1981), 749–

785.

[2] Aronson, D.G., The porous media equations. In Nonlinear Diffusion Problem. Lecture

Notes in Math., Vol. 1224, (A. Fasano, M. Primicerio, Eds) Springer-Verlag, Berlin, 1986.

[3] Chen, G.-Q. and Frid, H., Divergence-measure fields and hyperbolic conservation laws.

Arch. Rat. Mech. Anal. 147 (1999), 89-118.

[4] C. M. Dafermos, A system of hyperbolic conservation laws with frictional damping. Z.

Angew. Math. Phys., 46 Special Issue (1995), 294–307.

[5] C. M. Dafermos, Hyperbolic conservation laws in continuum physics, Springer-Verlag,

Berlin, 2000.

[6] C. M. Dafermos and R. H. Pan, Global BV solutions for the p-system with frictional

damping, Submitted to Comm. Pure Appl. Math., 2006.

22



[7] Ding, X.X., Chen, G.-Q. and Luo, P.Z., Convergence of the Lax-Friedrichs scheme for the

isentropic gas dynamics. Acta Math. Scientia 5 (1985), 415-472, 6 (1986), 75-120, 9 (1989),

43-44.

[8] Ding, X.X., Chen, G.-Q. and Luo, P.Z., Convergence of the fraction step Lax-Friedrichs

scheme and Godunov scheme for the isentropic system of gas dynamics. Comm. Math.

Phys. 121 (1989), 63-84.

[9] DiPerna, R.J., Convergence of the viscosity method for isentropic gas dynamics. Comm.

Math. Phys. 91 (1983), 1-30.

[10] Godunov, S., A Difference method for numerical calculation of discontinuous solutions of

the equations of hydrodynamics. Mat. Sb. 47 (1959), 271-360.

[11] Heidrich, A., Global weak solutions to initial boundary problems for the wave equation

with large data. Arch. Rat. Mech. Anal. 126 (1994), 333-368.

[12] Hsiao, L., Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scientific,

Singapore, 1998.

[13] Hsiao, L. and Liu, T.-P., Convergence to nonlinear diffusion waves for solutions of a system

of hyperbolic conservation laws with damping. Comm. Math. Phys. 143 (1992), 599-605.

[14] Hsiao, L. and Liu, T.-P., Nonlinear diffusive phenomena of nonlinear hyperbolic systems.

Chinese Ann. Math. Ser. B 14 (1993), 1-16.

[15] Hsiao, L. and Luo, T., Nonlinear diffusive phenomena of solutions for the system of com-

pressible adiabatic flow through porous media. J. Differentail Equations 125 (1996), 329-

365.

[16] L. Hsiao and R. H. Pan, The damped p-system with boundary effects. Contemporary

Mathematics, 255(2000), 109–123.

[17] Hsiao, L. and Pan, R., Initial boundary value problem for the system of compressible

adiabatic flow through porous media. J. Differential Equations 159 (1999), 280-305.

[18] Hsiao, L. and Serre, D., Global existence of solutions for the system of compressible adia-

batic flow through porous media. SIAM J. Math. Anal. 27 (1996), 70-77.

[19] F. M. Huang, P. Marcati, and R.H. Pan, Convergence to Barenblatt Solution for the

Compressible Euler Equations with Damping and Vacuum. Arch. Ration. Mech. Anal.

176 (2005), 1-24.

23



[20] F. M. Huang and R. H. Pan, Asymptotic behavior of the solutions to the damped com-

pressible Euler equations with vacuum. J. Differential Equations, 220 (2006), 207–233.

[21] F. M.Huang and R. H. Pan, Convergence rate for compressible Euler equations with damp-

ing and vacuum. Arch. Ration. Mech. Anal. 166 (2003), 359-376.

[22] Lions, P.L., Perthame, B. and Souganidis, P.E., Existence and stability of entropy solu-

tions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian

coordinates. Comm. Pure Appl. Math. 49 (1996), 599-638.

[23] Lions, P.L., Perthame, B. and Tadmor, E., Kinetic formulation of the isentropic gas dy-

namics and p-systems. Comm. Math. Phys. 163 (1994), 415-431.

[24] T. P. Liu, Compressible flow with damping and vacuum. Japan J. Appl. Math, 13 (1996),

25–32.

[25] T. Liu and T. Yang, Compressible Euler equations with vacuum. J. Differential Equations,

140 (1997), 223–237.

[26] T. Liu and T. Yang, Compressible flow with vacuum and physical singularity, preprint,

1999.

[27] M. Luskin and B. Temple, The existence of a global weak solution to the nonlinear water-

hammar problem. Comm. Pure Appl. Math., 35 (1982), 697–735.

[28] P. Marcati and M. Mei, Convergence to nonlinear diffusion waves for solutions of the initial

boundary value problem to the hyperbolic conservation laws with damping. Quart. Appl.

Math. 58 (2000), 763-783.

[29] P. Marcati and R. H. Pan, On the diffusive profiles for the system of compressible adiabatic

flow through porous media. SIAM J. Math. Anal., 33(2001), 790–826.
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