Show all your work. You may use one side of a letter-size sheet of paper for formulae in this exam. Calculator is not allowed. Please give yourself 50 minutes.

Problem 1

Let \(y = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \), \(u = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \), \(v = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \), and \(W = \text{span}\{u, v\} \).

a) Find the orthogonal projection of \(y \) onto \(W \).

b) Find the distance between \(y \) and \(W \).

Problem 2

Find the trigonometric function of the form \(f(t) = c_0 + c_1 \sin(t) + c_2 \cos(t) \) that best fits the data points \((0, 0), (1, 1), (2, 2), (3, 3)\), using least squares. Compute the least square error. (Remark: This is a problem for concept, find the formula, don’t have to solve for exact solution. The test problem will be easier to solve.)

Problem 3

Find all possible values of \(a \) so that the columns of \(A \) given below are linearly dependent?

\[
\begin{pmatrix}
 a & 2a & 0 & 0 \\
 0 & 0 & a - 3 & 3(a - 3) \\
 0 & -2a & 0 & 1 \\
 0 & 0 & a - 2 & 2(a - 2)
\end{pmatrix}
\]

Problem 4

(a) Prove that the set \(B = \{1 + t^2, t + t^2, 1 + 2t + t^2\} \) is a basis for \(P_2 \).

b) Find the matrix of the linear transformation \(T(f(t)) = f' - 3f \) from \(P_2 \) to \(P_2 \) with respect to the basis \(B \) found in part (a).

Problem 5

Let \(A \) be the following matrix

\[
\begin{pmatrix}
 1 & 3 & 5 \\
 1 & 1 & 0 \\
 1 & 1 & 2 \\
 1 & 3 & 3
\end{pmatrix}
\]

a) Find the \(QR \) factorization of \(A \).

b) Find the orthogonal projection of \(b = (1, 2, 3, 4)^T \) onto \(\text{Col}(A) \).
Problem 6: If A is an $n \times n$ matrix, is it true that $\det(AA^T) = \det(A^TA)$? Why?